Last Class: RPCs

* RPCs make distributed computations look like local
computations

* Issues:
— Parameter passing
— Binding
— Failure handling

m Computer Science CS677: Distributed OS Lecture 4, page |
UMASS

Today:

* Case Study: Sun RPC
* Lightweight RPCs

* Remote Method Invocation (RMI)

— Design issues

m Computer Science CS677: Distributed OS Lecture 4, page 2
UMASS

RPC Implementation Issues

* Choice of protocol [affects communication costs]
— Use existing protocol (UDP) or design from scratch
— Packet size restrictions
— Reliability in case of multiple packet messages
— Flow control

» Copying costs are dominant overheads
— Need at least 2 copies per message
* From client to NIC and from server NIC to server
— As many as 7 copies

* Stack in stub — message buffer in stub — kernel — NIC —
medium — NIC — kernel — stub — server

— Scatter-gather operations can reduce overheads

m Computer Science CS677: Distributed OS Lecture 4, page 3
UMASS

Case Study: SUNRPC

* One of the most widely used RPC systems
* Developed for use with NFS
* Built on top of UDP or TCP
— TCP: stream is divided into records
— UDP: max packet size < 8912 bytes
— UDP: timeout plus limited number of retransmissions
— TCP: return error if connection is terminated by server

* Multiple arguments marshaled into a single structure

* At-least-once semantics if reply received, at-least-zero semantics
if no reply. With UDP tries at-most-once

* Use SUN’s eXternal Data Representation (XDR)

— Big endian order for 32 bit integers, handle arbitrarily large data structures

m Computer Science CS677: Distributed OS Lecture 4, page 4
UMASS

Binder: Port Mapper

Server start-up: create port

Server stub calls svc_register to
register prog. #, version # with
local port mapper

register
machine

request reply

*Port mapper stores prog #,
version #, and port e

client

Client start-up: call clnt_create
to locate server port

*Upon return, client can call
procedures at the server

m Computer Science CS677: Distributed OS Lecture 4, page 5
UMASS

Rpcgen: generating stubs

SEIVEr e server
rocedures
server stub

=S L

O svcc
RPC spacilition Tk Rre
rpogen untme
(e |
|
cllent client stub \

* Q xdr.c: do XDR conversion

* Detailed example: later in this course

m Computer Science CS677: Distributed OS Lecture 4, page 6
UMASS

Lightweight RPCs

* Many RPCs occur between client and server on same
machine

— Need to optimize RPCs for this special case => use a
lightweight RPC mechanism (LRPC)

« Server S exports interface to remote procedures
* Client C on same machine imports interface

* OS kernel creates data structures including an argument
stack shared between S and C

m Computer Science CS677: Distributed OS Lecture 4, page 7
UMASS

Lightweight RPCs

* RPC execution
— Push arguments onto stack
— Trap to kernel
— Kernel changes mem map of client to server address space
— Client thread executes procedure (OS upcall)
— Thread traps to kernel upon completion
— Kernel changes the address space back and returns control to
client

» (Called “doors” in Solaris

m Computer Science CS677: Distributed OS Lecture 4, page 8
UMASS

Doors

Computer
Client process Server process
server_door..) -
{
a:or_remmt...):
}
rmain ()
{ main()

o petaoorname.)| Register door | _ fi = door_create...)
. - \ A fattach(fd. door_name. ...).
L ——— "

Operating system -
P a5y’ «
4
Invoke registered door X
at other process Return to calling process

e Which RPC to use? - run-time bit allows stub to choose between
LRPC and RPC

m Computer Science CS677: Distributed OS Lecture 4, page 9
UMASS

Other RPC Models

* Asynchronous RPC
— Request-reply behavior often not needed
— Server can reply as soon as request is received and execute procedure later

* Deferred-synchronous RPC
— Use two asynchronous RPCs

— Client needs a reply but can’t wait for it; server sends reply via another
asynchronous RPC

* One-way RPC
— Client does not even wait for an ACK from the server

— Limitation: reliability not guaranteed (Client does not know if procedure
was executed by the server).

m Computer Science CS677: Distributed OS Lecture 4, page 10
UMASS

Asynchronous RPC

Client Wait for result Client Wait for acceptance
___________ —
ﬂ'n\ 4% « \ f"
\ [0 \
Call remote | / Return Call remote | /' Return
procedure | /" from call procedure "-\ K from call
| Y /
{ \ ,rr
f Request | | Accept request
Requesti | Reply q oy PLreq
___ U
Server Call local procedure Time —» Server Call local procedure Time —»
and return results
(@ (b)
a)

The interconnection between client and server in a traditional RPC
b) The interaction using asynchronous RPC
m Computer Science
UMASS

CS677: Distributed OS

Lecture 4, page 11

Deferred Synchronous RPC

A client and server interacting through two asvnchronous RPCs

Whait for Interrupt client
Client acceptance .‘.
BN o,
~ | f} ,.4I\'.
! fo
Call remote 11 | Return met / \
/ from call urn [
procedure \'ﬁ / results / | Acknowledge
|/ Accept / |
Request ‘{, request)
Server L r*
Call local procedure \ Time ——»

Call client with
one-way RPC

m Computer Science
UMASS

CS677: Distributed OS

Lecture 4, page 12

Remote Method Invocation (RMI)

* RPCs applied to objects, 1.e., instances of a class

— Class: object-oriented abstraction; module with data and
operations

— Separation between interface and implementation

— Interface resides on one machine, implementation on another
* RMIs support system-wide object references

— Parameters can be object references

m Computer Science CS677: Distributed OS Lecture 4, page 13
UMASS

Distributed Objects

Client machine Server machine
) A Object
Client Server e
R [State
Same PR
Client interface J [e ——1- method
invokes : - as object
a method L .
 J S
- ﬁl Selewn | | ok Interface
Praxy same method Skeleton |
at object A
Client 05 Server 0S8
i i
A
Metwork

Marshalled invocation
is passed across network

* When a client binds to a distributed object, load the interface
(“proxy”) into client address space
— Proxy analogous to stubs

e Server stub is referred to as a skeleton

m Computer Science CS677: Distributed OS Lecture 4, page 14
UMASS

Proxies and Skeletons

* Proxy: client stub
— Maintains server ID, endpoint, object ID
— Sets up and tears down connection with the server
— [Java:] does serialization of local object parameters
— In practice, can be downloaded/constructed on the fly (why
can’t this be done for RPCs in general?)
« Skeleton: server stub

— Does deserialization and passes parameters to server and sends
result to proxy

m Computer Science CS677: Distributed OS Lecture 4, page 15
UMASS

Binding a Client to an Object

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = ...; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(a)
Distr_object objPref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = ...; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

(b)

a) (a) Example with implicit binding using only global references
b) (b) Example with explicit binding using global and local references

m Computer Science CS677: Distributed OS Lecture 4, page 16
UMASS

Parameter Passing

* Less restrictive than RPCs.
— Supports system-wide object references
— [Java] pass local objects by value, pass remote objects by reference

Machine A Machine B
Local | Local object | Remote object
f L1 o1 Remote L o) J
reference ad reference R1 k. »
. . | B \
f—'— . ____!--"'...
Client code with
RMI to server at C
(proxy) New local (\
.. reference | Copy of O1 |
Remote T ad ot -
invocation with al
L1 and R1 as E' Copy of R1to 02
parameters " Server code
Machine C

(method implementation)

CS677: Distributed OS Lecture 4, page 17

m Computer Science
UMASS

DCE Distributed-Object Model

Server machine Server machine

Dynamic
| (private) object' . i
‘ A [Named (shared)
. L object
Dynamic Dynamic | -_? A F.\
| (private) object | _(private) object, i \,
A y - . R ;
! \ Remote ‘
I & reference e
.;: ‘e
Client #1 Client #2 Client #3 Client #1 Client#2 Client #3
(a) (b)

a) Distributed dynamic objects in DCE.
b) Distributed named objects

m Computer Science

CS677: Distributed OS Lecture 4, page 18

Java RMI

* Server

— Defines interface and implements interface methods

— Server program

* Creates server object and registers object with “remote
object” registry

¢ Client

— Looks up server in remote object registru

— Uses normal method call syntax for remote methos
 Java tools

— Rmiregistry: server-side name server
— Rmic: uses server interface to create client and server stubs

m Computer Science CS677: Distributed OS Lecture 4, page 19
UMASS

Java RMI and Synchronization

 Java supports Monitors: synchronized objects
— Serializes accesses to objects
— How does this work for remote objects?
» Options: block at the client or the server
* Block at server
— Can synchronize across multiple proxies
— Problem: what if the client crashes while blocked?
* Block at proxy
— Need to synchronize clients at different machines
— Explicit distributed locking necessary
 Java uses proxies for blocking
— No protection for simultaneous access from different clients
— Applications need to implement distributed locking

m Computer Science CS677: Distributed OS Lecture 4, page 20
UMASS

