
The Design, Implementation and Evaluation of SMART:
A Scheduler for Multimedia A pplications

Jason Nieh1,2 and Monica S. Lam1

1Computer Systems Laboratory, Stanford University
2Sun Microsystems Laboratories

Abstract

Real-time applications such as multimedia audio and video are
increasingly populating the workstation desktop. To support the exe-
cution of these applications in conjunction with traditional non-real-
time applications, we have created SMART, a Scheduler for Multi-
media And Real-Time applications. SMART supports applications
with time constraints, and provides dynamic feedback to applica-
tions to allow them to adapt to the current load. In addition, the sup-
port for real-time applications is integrated with the support for
conventional computations. This allows the user to prioritize across
real-time and conventional computations, and dictate how the pro-
cessor is to be shared among applications of the same priority. As
the system load changes, SMART adjusts the allocation of
resources dynamically and seamlessly. SMART is unique in its
ability to automatically shed real-time tasks and regulate their exe-
cution rates when the system is overloaded, while providing better
value in underloaded conditions than previously proposed schemes.
We have implemented SMART in the Solaris UNIX operating sys-
tem and measured its performance against other schedulers in exe-
cuting real-time, interactive, and batch applications. Our results
demonstrate SMART’s superior performance in supporting multi-
media applications.

1 Intr oduction

The workload on computers is rapidly changing. In the past,
computers were used in automating tasks around the work place,
such as word and accounts processing in offices, and design auto-
mation in engineering environments. The human-computer inter-
face has been primarily textual, with some limited amount of
graphical input and display. With the phenomenal improvement in
hardware technology in recent years, even highly affordable per-
sonal computers are capable of supporting much richer interfaces.
Images, video, audio, and interactive graphics have become com-
mon place. A growing number of multimedia applications are avail-
able, ranging from video games and movie players, to sophisticated
distributed simulation and virtual reality environments.In anticipa-
tion of a wider adoption of multimedia in applications in the future,
there has been much research and development activity in computer
architecture for multimedia applications. Not only is there a prolif-
eration of processors that are built for accelerating the execution of
multimedia applications, even general-purpose microprocessors
have incorporated special instructions to speed their execution [20].

While hardware has advanced to meet the special demands of
multimedia applications, software environments have not. In partic-
ular, multimedia applications have real-time constraints which are
not handled well by today’s general-purpose operating systems.

The problems experienced by users of multimedia on these
machines include video jitter, poor “lip-synchronization” between
audio and video, and slow interactive response while running video
applications. Commercial operating systems such as UNIX SVR4
[39] attempt to address these problems by providing a real-time
scheduler in addition to a standard time-sharing scheduler. How-
ever, such hybrid schemes lead to experimentally demonstrated
unacceptable behavior, allowing runaway real-time activities to
cause basic system services to lock up, and the user to lose control
over the machine [29].

This paper argues for the need to design a new processor sched-
uling algorithm that can handle the mix of applications we see
today. We present a scheduling algorithm which we have imple-
mented in the Solaris UNIX operating system [11], and demon-
strate its improved performance over existing schedulers on real
applications.

1.1 Demands of multimedia applications on processor
scheduling

To understand the requirements imposed by multimedia applica-
tions on processor scheduling, we first describe the salient features
of these applications and their special demands that distinguish
them from the conventional (non-real-time) applications current
operating systems are designed for:

• Soft real-time constraints. Real-time applications have appli-
cation-specific timing requirements that need to be met [31].
For example in the case of video, time constraints arise due to
the need to display video in a smooth and synchronized way,
often synchronized with audio. Time constraints may be peri-
odic or aperiodic in nature. Unlike conventional applications,
tardy results are often of little value; it is often preferable to
skip a computation than to execute it late. Unlike hard real-
time environments, missing a deadline only diminishes the
quality of the results and does not lead to catastrophic fail-
ures.

• Insatiable resource demands and frequent overload. Multi-
media applications present practically an insatiable demand
for resources. Today, video playback windows are typically
tiny at full display rate because of insufficient processor cy-
cles to keep up at full resolution. As applications such as real-
time video are highly resource intensive and can consume the
resources of an entire machine, resources are commonly
overloaded, with resource demand exceeding its availability.

• Dynamically adaptive applications. When resources are over-
loaded and not all time constraints can be met, multimedia
applications are often able to adapt and degrade gracefully by
offering a different quality of service [32]. For example, a
video application may choose to skip some frames or display
at a lower image quality when not all frames can be pro-
cessed in time.

• Co-existence with conventional computations. Real-time ap-
plications must share the desktop with already existing con-
ventional applications, such as word processors, compilers,

1

Appears inProceedings of the Sixteenth ACM Symposium on Operating Systems Principles, St. Malo, France, October, 1997.

etc. Real-time tasks should not always be allowed to run in
preference to all other tasks because they may starve out im-
portant conventional activities, such as those required to keep
the system running. Moreover, users would like to be able to
combine real-time and conventional computations together in
new applications, such as multimedia documents, which mix
text and graphics as well as audio and video. In no way
should the capabilities of a multiprogrammed workstation be
reduced to a single function commodity television set in order
to meet the demands of multimedia applications.

• Dynamic environment.Unlike static embedded real-time envi-
ronments, workstation users run an often changing mix of ap-
plications, resulting in dynamically varying loads.

• User preferences.Different users may have different prefer-
ences, for example, in regard to trading off the speed of a
compilation versus the display quality of a video, depending
on whether the video is part of an important teleconferencing
session or just a television show being watched while waiting
for an important computational application to complete.

1.2 Overview of this paper

This paper proposes SMART (Scheduler for Multimedia And
Real-Time applications), a processor schedulerthat fully supports
the application characteristics described above. SMART consists of
a simple application interface and a scheduling algorithm that tries
to deliver the best overall value to the user. SMART supports appli-
cations with time constraints, and provides dynamic feedback to
applications to allow them to adapt to the current load. In addition,
the support for real-time applications is integrated with the support
for conventional computations. This allows the user to prioritize
across real-time and conventional computations, and dictate how
the processor is to be shared among applications of the same prior-
ity. As the system load changes, SMART adjusts the allocation of
resources dynamically and seamlessly. SMART is unique in its
ability to automatically shed real-time tasks and regulate their exe-
cution rates when the system is overloaded, while providing better
value in underloaded conditions than previously proposed schemes.

SMART achieves this behavior by reducing this complex
resource management problem into two decisions, one based on
importance to determine the overall resource allocation for each
task, and the other based onurgency to determine when each task is
given its allocation. SMART provides a common importance
attribute for both real-time and conventional tasks based on priori-
ties and weighted fair queueing (WFQ) [7]. SMART then uses an
urgency mechanism based on earliest-deadline scheduling [26] to
optimize the order in which tasks are serviced to allow real-time
tasks to make the most efficient use of their resource allocations to
meet their time constraints. In addition, a bias on conventional
batch tasks that accounts for their ability to tolerate more varied
service latencies is used to give interactive and real-time tasks bet-
ter performance during periods of transient overload.

This paper also presents some experimental data on the SMART
algorithm, based on our implementation of the scheduler in the
Solaris UNIX operating system. We present two sets of data, both
of which are based on a workstation workload consisting of real
multimedia applications running with representative batch and
interactive applications. For the multimedia application, we use a
synchronized media player developed by Sun Microsystems Labo-
ratories that was originally tuned to run well with the UNIX SVR4
scheduler. It takes only the addition of a couple of system calls to
allow the application to take advantage of SMART’s features. We
will describe how this is done to give readers a better understanding
of the SMART application interface. The first experiment compares
SMART with two other existing scheduling algorithms: UNIX
SVR4 scheduling, which serves as the most common basis of work-

station operating systems used in current practice [12], and WFQ,
which has been the subject of much attention in current research [2,
7, 33, 38, 40]. The experiment shows that SMART is superior to the
other algorithms in the case of a workstation overloaded with real-
time activities. In the experiment, SMART delivers over 250%
more real-time multimedia data on time than UNIX SVR4 time-
sharing and over 60% more real-time multimedia data on time than
WFQ, while also providing better interactive response. The second
experiment demonstrates the ability of SMART to (1) provide the
user with predictable control over resource allocation, (2) adapt to
dynamic changes in the workload and (3) deliver expected behavior
when the system is not overloaded.

The paper is organized as follows. Section 2 introduces the
SMART application interface and usage model. Section 3 describes
the SMART scheduling algorithm. We start with the overall ratio-
nale of the design and the major concepts, then present the algo-
rithm itself, followed by an example to illustrate the algorithm.
Despite the simplicity of the algorithm, the behavior it provides is
rather rich. Section 4 analyzes the different aspects of the algorithm
and shows how the algorithmdelivers behavior consistent with its
principles of operations. Section 5 provides a comparison with
related work. Section 6 presents a set of experimental results, fol-
lowed by some concluding remarks.

2 The SMART interface and usage model

The SMART interface provides to the application developer
time constraints andnotifications for supporting applications with
real-time computations, and provides to the user of applicationspri-
orities and shares for predictable control over the allocation of
resources. An overview of the interface is presented here. A more
detailed description can be found in [30].

Multimedia application developers are faced with the problem
of writing applications with time constraints. They typically know
the deadlines that must be met in these applications and know how
to allow these applications to degrade gracefully when not all time
constraints can be met. The problem is that current operating sys-
tem practice, as typified by UNIX, does not provide an adequate
amount of functionality for supporting these applications. For
example, in dealing with time under UNIX, an application can tell
the scheduler to delay a computation by “sleeping” for a duration of
time. An application can also obtain simple timing information
such as elapsed wall clock time and accumulated execution time.
However, it cannot ask the scheduler to complete a computation
before a given deadline, nor can it ask the scheduler whether or not
it is possible for the computation to complete before a given dead-
line. The lack of system support exacerbates the difficulty of writ-
ing applications with time constraints and results in poor
application performance.

By providing explicit time constraints, SMART allows applica-
tions to communicate their timing requirements to the system. A
time constraint consists of a deadline and an estimate of the pro-
cessing time required to meet the deadline. An application can
inform the scheduler that a given block of code has a certain dead-
line by which it should be completed, can request information on
the availability of processing time for meeting a deadline, and can
request a notification from the scheduler if it is not possible for the
specified deadline to be met. Furthermore, applications can have
blocks of code with time constraints and blocks of code that do not,
thereby allowing application developers to freely mix real-time and
conventional computations.

SMART also provides a simple upcall from the scheduler that
informs the application that its deadline cannot be met. This upcall
mechanism is called a notification. It frees applications from the
burden of second guessing the system to determine if their time
constraints can be met, and allows applications to choose their own

2

policies for deciding what to do when a deadline is missed. For
example, upon notification, the application may choose to discard
the current computation, perform only a portion of the computation,
or change the time constraints of the computation. This feedback
from the system enables adaptive real-time applications to degrade
gracefully.

Time constraints and notifications are intended to be used by
application writers to support their development of real-time appli-
cations; the end user of such applications need not know anything
about time constraints. As an example, we describe an audio/video
application that was programmed using time constraints in Section
6.1.

As users may have different preferences for how processing
time should be allocated among a set of applications, SMART pro-
vides two parameters to predictably control processor allocation.
These parameters can be used to bias the allocation of resources to
provide the best performance for those applications which are cur-
rently more important to the user. The user can specify that applica-
tions have different priorities, meaning that the application with the
higher priority is favored whenever there is contention for
resources. Among applications at the same priority, the user can
specify the share of each application, resulting in each application
receiving an allocation of resources in proportion to its respective
share whenever there is contention for resources. The notions of
priority and share apply uniformly to both real-time and conven-
tional applications. This level of predictable control is unlike cur-
rent practice, as typified by UNIX time-sharing, in which all that a
user is given is a “nice” knob [39] whose setting is poorly corre-
lated to the scheduler’s externally observable behavior [29].

Our expectation is that most users will run the applications in
the default priority level with equal shares. This is the system
default and requires no user parameters. The user may wish to
adjust the proportion of shares between the applications occasion-
ally. A simple graphical interface can be provided to make the
adjustment as simple and intuitive as adjusting the volume of a tele-
vision or the balance of a stereo output. The user may want to use
the priority to handle specific circumstances. Suppose we wish to
run the PointCast application [34] in the background only if the
system is not busy; this can be achieved simply by running Point-
Cast with a low priority.

3 The SMART scheduler

In the following, we first describe the principles of operations
used in the design of the scheduler. We then give an overview of the
rationale behind the design, followed by an overview of the algo-
rithm and then the details.

3.1 Principles of operations

It is the scheduler’s objective to deliver the behavior expected by
the user in a manner that maximizes the overall value of the system
to its users. We have reduced this objective to the following six
principles of operations:

• Priority. The system should not degrade the performance of a
high priority application in the presence of a low priority ap-
plication.

• Proportional sharing among real-time and conventional ap-
plications in the same priority class.Proportional sharing ap-
plies only if the scheduler cannot satisfy all the requests in the
system. The system will fully satisfy the requests of all appli-
cations requesting less than their proportional share. The re-
sources left over after satisfying these requests are distributed
proportionally among tasks that can use the excess. While it
is relatively easy to control the execution rate of conventional
applications, the execution rate of a real-time application is
controlled by selectively shedding computations in as even a
rate as possible.

• Graceful transitions between fluctuations in load.The system
load varies dynamically, new applications come and go, and
the resource demand of each application may also fluctuate.
The system must be able to adapt to the changes gracefully.

• Satisfying real-time constraints and fast interactive response
time in underload.If real-time and interactive tasks request
less than their proportional share, their time constraints
should be honored when possible, and the interactive re-
sponse time should be short.

• Trading off instantaneous fairness for better real-time and in-
teractive response time. While it is necessary that the alloca-
tion is fair on average, insisting on being fair instantaneously
at all times would cause many more deadlines to be missed
and deliver poor response time to short running tasks. We will
tolerate some instantaneous unfairness so long as the extent
of the unfairness is bounded. This is the same motivation be-
hind the design of multi-level feedback schedulers [23] to im-
prove the response time of interactive tasks.

• Notification of resource availability. SMART allows applica-
tions to specify if and when they wish to be notified if it is
unlikely that their computations will be able to complete be-
fore their given deadlines.

3.2 Rationale and overview

As summarized in Table 1, real-time and conventional applica-
tions have very diverse characteristics. It is this diversity that makes
devising an integrated scheduling algorithm difficult. A real-time
scheduler uses real-time constraints to determine the execution
order, but conventional tasks do not have real-time constraints.
Adding periodic deadlines to conventional tasks is a tempting
design choice, but it introduces artificial constraints that reduce the
effectiveness of the system. On the other hand, a conventional task
scheduler has no notion of real-time constraints; the notion of time-
slicing the applications to optimize system throughput does not
serve real-time applications well.

The crux of the solution is not to confuseurgency with impor-
tance. An urgent task is one which has an immediate real-time con-
straint. An important task is one with a high priority, or one that has

Table 1: Categories of applications

Real-Time Applications Conventional Applications

Interacti ve Batch

Deadlines Yes No No

Quantum of Execution Service time: no value if the
entire task is not executed

Arbitrary choice Arbitrary choice

Resource Requirement A slack is usually present Relinquishes machine while
waiting for human response

Can consume all processor
cycles until it completes

Quality of Service Metric Number of deadlines met Response time Program completion time

3

been the least serviced proportionally among applications with the
same priority. An urgent task may not be the one to execute if it
requests more resources than its fair share. Conversely, an impor-
tant task need not be run immediately. For example, a real-time task
that has a higher priority but a later deadline may be able to tolerate
the execution of a lower priority task with an earlier deadline. Our
algorithm separates the processor scheduling decisions into two
steps; the first identifies all the candidates that are considered
important enough to execute, and the second chooses the task to
execute based on urgency considerations.

While urgency is specific to real-time applications, importance
is common to all the applications. We measure the importance of an
application by avalue-tuple, which is a tuple with two components:
priority and thebiased virtual finishing time(BVFT). Priority is a
static quantity either supplied by the user or assigned the default
value; BVFT is a dynamic quantity the system uses to measure the
degree to which each task has been allotted its proportional share of
resources. The formal definition of the BVFT is given in Section
3.3. We say that taskA has a higher value-tuple than taskB if A has
a higher static priority or if bothA andB have the same priority and
A has an earlier BVFT.

The SMART scheduling algorithm used to determine the next
task to run is as follows:

1. If the task with the highest value-tuple is a conventional task
(a task without a deadline), schedule that task.

2. Otherwise, create a candidate set consisting of all real-time
tasks with higher value-tuple than that of thehighest value-tu-
ple conventional task. (If no conventional tasks are present,
all the real-time tasks are placed in the candidate set.)

3. Apply the best-effort real-time scheduling algorithm [27]
on the candidate set, using the value-tuple as the priority
in the original algorithm. By using the given deadlines and
service-time estimates, find the task with the earliest dead-
line whose execution does not cause any tasks with higher
value-tuples to miss their deadlines. This is achieved by
considering each candidate in turn, starting with the
onewith the highest value-tuple. The algorithm attempts
to schedule the candidate into a working schedule which is
initially empty. The candidate is inserted in deadline order
in this schedule provided its execution does not cause any
of the tasks in the schedule to miss its deadline. The
scheduler simply picks the task with the earliest deadline
in the working schedule.

4. If a task cannot complete its computation before its deadline,
send a notification to inform the respective application that its
deadline cannot be met.

The following sections provide a more detailed description of the
BVFT, and the best-effort real-time scheduling technique.

3.3 Biased virtual finishing time

The notion of avirtual finishing time (VFT), which measures the
degree to which the task has been allotted its proportional share of
resources, has been previously used in describing fair queueing
algorithms [2, 7, 33, 38, 40]. We augment this basic notion in the
following ways. First, our use of virtual finishing times incorporates
tasks with different priorities. Second, we add to the virtual finish-
ing time a bias, which is a bounded offset used to measure the abil-
ity of conventional tasks to tolerate longer and more varied service
delays. The biased virtual finishing time allows us to provide better
interactive and real-time response without compromising fairness.
Finally and most importantly, weighted fair queueing executes the
task with the earliest virtual finishing time to provide proportional
sharing. SMART only uses the biased virtual finishing time in the
selection of the candidates for scheduling, and real-time constraints

are also considered in the choice of the application to run. This
modification enables SMART to handle applications with aperiodic
constraints and overloaded conditions.

Our algorithm organizes all the tasks into queues, one for each
priority. The tasks in each queue are ordered in increasing BVFT
values. Each task has avirtual time which advances at a rate pro-
portional to the amount of processing time it consumes divided by
its share. Suppose the current task being executed has shareS and
was initiated at timeτ. Letv(τ) denote the task’s virtual time at time
τ. Then the virtual timev(t) of the task at current timet is

�
�����

Correspondingly, each queue has aqueue virtual time which
advances only if any of its member tasks is executing. The rate of
advance is proportional to the amount of processing time spent on
the task divided by total number of shares of all tasks on the queue.
To be more precise, suppose the current task being executed has
priority P and was initiated at timeτ. Let VP(τ) denote the queue
virtual time of the queue with priorityP at timeτ. Then the queue
virtual timeVP(t) of the queue with priorityP at current timet is

�
�����

whereSa represents the share of applicationa, andAP is the set of
applications with priorityP.

Previous work in the domain of packet switching provides a the-
oretical basis for using the difference between the virtual time of a
task and the queue virtual time as a measure of whether the respec-
tive task has consumed its proportional allocation of resources [7,
33]. If a task’s virtual time is equal to the queue virtual time, it is
considered to have received its proportional allocation of resources.
An earlier virtual time indicates that the task has less than its pro-
portional share, and, similarly, a later virtual time indicates that it
has more than its proportional share. Since the queue virtual time
advances at the same rate for all tasks on the queue, the relative
magnitudes of the virtual times provide a relative measure of the
degree to which each task has received its proportional share of
resources.

The virtual finishing time refers to the virtual time of the appli-
cation, had the application been given the currently requested quan-
tum. The quantum for a conventional task is the unit of time the
scheduler gives to the task to run before being rescheduled. The
quantum for a real-time task is the application-supplied estimate of
its service time. A useful property of the virtual finishing time,
which is not shared by the virtual time, is that it does not change as
a task executes and uses up its time quantum, but only changes
when the task is rescheduled with a new time quantum.

In the following, we step through all the events that lead to the
adjustment of the biased virtual finishing time of a task. Let the task
in question have priority P and shareS.Let β(t) denote the BVFT
of the task at timet.

Task creation time. When a task is created at timeτ0, it acquires
as its virtual time the queue virtual time of the its corresponding
queue. Suppose the task has time quantumQ, then its BVFT is

�
�����

Completing a Quantum.Once a task is created, its BVFT is
updated as follows. When a task finishes executing for its time
quantum, it is assigned a new time quantumQ. As a conventional
task accumulates execution time, a bias is added to its BVFT when
it gets a new quantum. That is, letb representthe increased bias and
τ be the time a task’s BVFT was last changed. Then, the task’s
BVFT is

v t() v τ() t τ–
S

----------+=

VP t() VP τ() t τ–

Sa
a AP∈
∑

-------------------+=

β τ0() VP τ0() Q
S
----+=

4

�
� 	
�

The bias is used to defer long running batch computations dur-
ing transient loads to allow real-time and interactive tasks to obtain
better immediate response time. The bias is increased in a manner
similar to the way priorities and time quanta are adjusted in UNIX
SVR4 to implement time-sharing [39]. The total bias added to an
application’s BVFT is bounded. Thus, the bias does not change
either the rate at which the BVFT is advanced or the overall propor-
tional allocation of resources. It only affects the instantaneous pro-
portional allocation. User interaction causes the bias to be reset to
its initial value. Real-time tasks have zero bias.

The idea of a dynamically adjusted bias based on execution time
is somewhat analogous to the idea of a decaying priority based on
execution time which is used in multilevel-feedback schedulers.
However, while multilevel-feedback affects the actual average
amount of resources allocated to each task, bias only affects the
response time of a task and does not affect its overall ability to
obtain its proportional share of resources. By combining virtual fin-
ishing times with bias, the BVFT can be used to provide both pro-
portional sharing and better system responsiveness in a systematic
fashion.

Blocking for I/O or events. A blocked task should not be
allowed to accumulate credit to a fair share indefinitely while it is
sleeping; however, it is fair and desirable to give the task a limited
amount of credit for not using the processor cycles and to improve
the responsiveness of these tasks. Therefore, SMART allows the
task to remain on its given priority queue for a limited duration
which is equal to the lesser of the deadline of the task (if one
exists), or a system default. At the end of this duration, a sleeping
task must leave the queue, and SMART records the difference
between the task’s and the queue’s virtual time. This difference is
then restored when the task rejoins the queue once it becomes run-
nable. LetE be the execution time the task has already received
toward completing its time quantumQ, B be its current bias, and
v(t) denote the task’s virtual time. Then, the difference∆ is

�
�����

where

�
�����

Upon rejoining the queue, its bias is reset to zero and the BVFT is

�
����

Reassigned user parameters. If a task is given a new priority, it
is reassigned to the queue corresponding to its new priority, and its
BVFT is simply calculated as in Equation (3). If the task is given a
new share, the BVFT is calculated by having the task leave the
queue with the old parameters used in Equation (6) to calculate∆,
and then join the queue again with the new parameters used in
Equation (7) to calculate its BVFT.

3.4 Best-effort r eal-time scheduling

SMART iteratively selects tasks from the candidate set in
decreasing value-tuple order and inserts them into an initially
empty working schedule in increasing deadline order. The working
schedule defines an execution order for servicing the real-time
resource requests. It is said to befeasible if the set of task resource
requirements in the working schedule, when serviced in the order
defined by the working schedule, can be completed before their
respective deadlines. It should be noted that the resource require-
ment of a periodic real-time task includes an estimate of the pro-
cessing time required for its future resource requests.

To determine if a working schedule is feasible, letQj be the pro-
cessing time required by taskj to meet its deadline, and letEj be the
execution time taskj has already spent running toward meeting its
deadline. LetFj be the fraction of the processor required by a peri-
odic real-time task;Fj is simply the ratio of a task’s service time to
its period if it is a periodic real-time task, and zero otherwise. Let
Dj be the deadline of the task. Then, the estimated resource require-
ment of taskj at a timet such that is:

�
�����

A working scheduleW is then feasible if for each taski in the
schedule with deadlineDi, the following inequality holds:

�
�����

On each task insertion into the working schedule, the resulting
working schedule that includes the newly inserted task is tested for
feasibility. If the resulting working schedule is feasible and the
newly inserted task is a periodic real-time task, its estimate of
future processing time requirements is accounted for in subsequent
feasibility tests. At the same time, lower value-tuple tasks are only
inserted into the working schedule if they do not cause any of the
current and estimated future resource requests of higher value-tuple
tasks to miss their deadlines. The iterative selection process is
repeated until SMART runs out of tasks or until it determines that
no further tasks can be inserted into the schedule feasibly. Once the
iterative selection process has been terminated, SMART then exe-
cutes the earliest-deadline runnable task in the schedule.

If there are no runnable conventional tasks and there are no run-
nable real-time tasks that can complete before their deadlines, the
scheduler runs the highest value-tuple runnable real-time task, even
though it cannot complete before its deadline. The rationale for this
is that it is better to use the processor cycles than allow the proces-
sor to be idle. The algorithm is therefore work conserving, meaning
that the resources are never left idle if there is a runnable task, even
if it cannot satisfy its deadline.

3.5 Complexity

The cost of scheduling with SMART consists of the cost of
managing the value-tuple list and the cost of managing the working
schedule. The cost of managing the value-tuple list in SMART is

, whereN is the number of active tasks. This assumes a linear
insertion value-tuple list. The complexity can be reduced to

 using a tree data structure. For smallN, a simple linear
list is likely to be most efficient in practice. The cost of managing
the value-tuple list is the same as WFQ.

The worst case complexity of managing the working schedule is
, whereNR is the number of active real-time tasks of higher

value than the highest value conventional task. This worst case
occurs if each real-time task needs to be selected and feasibility
tested against all other tasks when rebuilding the working schedule.
It is unlikely for the worst case to occur in practice for any reason-
ably largeNR. Real-time tasks typically have short deadlines so that
if there are a large number of real-time tasks, the scheduler will
determine that there is no more slack in the schedule before all of
the tasks need to be individually tested for insertion feasibility. The
presence of conventional tasks in the workstation environment also
preventsNR from growing large. For largeN, the cost of scheduling
with SMART in practice is expected to be similar to WFQ.

A more complicated algorithm can be used to reduce the com-
plexity of managing the working schedule. In this case, a new
working schedule can be incrementally built from the existing
working schedule as new tasks arrive. By using information con-
tained in the existing working schedule, the complexity of building
the new working schedule can be reduced to . When only

β t() β τ() Q
S
---- b

S
---+ +=

∆ v t() VP t()–=

v t() β t() Q E–
S

--------------– B
S
---–=

β t() VP t() ∆ Q
S
----++=

t D j≥
Rj t() Q j E j– F j t D j–()× t D j≥,+=

Di t Rj Di() i W∈∀, ˙

j W D j Di≤∈
∑+≥

O N()

O Nlog()

O NR
2

()

O NR()

5

deletions are made to the working schedule, the existing working
schedule can simply be used, reducing the cost to .

3.6 Example

We now present a simple example to illustrate how the SMART
algorithm works. Consider a workload involving two real-time
applications,A andB, and a conventional applicationC. Suppose
all the applications belong to the same priority class, and their pro-
portional shares are in the ratio of 1:1:2, respectively. Both real-
time applications request 40 ms of computation time every 80 ms,
with their deadlines being completely out of phase, as shown in
Figure 1(a). The applications request to be notified if the deadlines
cannot be met; upon notification, the application drops the current
computation and proceeds to the computation for the next deadline.
The scheduling quantum of the conventional applicationC is also
40 ms and we assume that it has accumulated a bias of 100 ms at
this point. Figure 1(b) and (c) show the final schedule created by
SMART for this scenario, and the BVFT values of the different
applications at different time instants.

The initial BVFTs of applicationsA andB are the same; sinceC
has twice as many shares asA andB, the initial BVFT ofC is half
of the sum of the bias and the quantum length. Because of the bias,
applicationC has a later BVFT and is therefore not run immedi-
ately. The candidate set considered for execution consists of both
applications,A andB; A is selected to run because it has an earlier
deadline. (In this case, the deadline is used as a tie-breaker between
real-time tasks with the same BVFT; in general, a task with an early
deadline may get to run over a task with an earlier BVFT but a later
deadline.) When a task finishes its quantum, its BVFT is incre-
mented. The increment forC is half of that forA andB because the
increment is the result of dividing the time quantum by its share.
Figure 1(c) shows how the tasks are scheduled such that their
BVFT are kept close together.

This example illustrates several important characteristics of
SMART. First, SMART implements proportional sharing properly.
In the steady state,C is given twice as much resources as A or B,
which reflects the ratio of shares given to the applications. Second,
the bias allows better response in temporary overload, but it does
not reduce the proportional share given to the biased task. Because
of C’s bias,A andB get to run immediately at the beginning; even-
tually their BVFTs catch up with the bias, andC is given its fair
share. Third, the scheduler is able to meet many real-time con-
straints, while skipping tardy computations. For example, at time 0,
SMART schedules applicationA before B so as to satisfy both
deadlines. On the other hand, at time 120 ms into the execution,
realizing that it cannot meet theA2 deadline,it executes application
B instead and notifiesA of the missed deadline.

4 Analysis of the behavior of the algorithm

In the following, we describe how the scheduling algorithm fol-
lows the principles of operations as laid out in Section 3.1.

4.1 Priority

Our principle of operation regarding priority is that the perfor-
mance of high priority tasks should not be affected by the presence
of low priority tasks. As the performance of a conventional task is
determined by its completion time, a high priority conventional task
should be run before any lower priority task. Step 1 of the algo-
rithm guarantees this behavior because a high priority task always
has a higher value-tuple than any lower priority task.

On the other hand, the performance metric of a real-time appli-
cation is the number of deadlines satisfied, not how early the execu-
tion takes place. The best-effort scheduling algorithm in Step 3 will
run a lower priority task with an earlier deadline first, only if it can
determine that doing so does not cause the high priority task to miss
its deadline. In this way, the system delivers a better overall value to
the user. Note that the scheduler uses the timing information sup-
plied by the applications to determine if a higher priority deadline is
to be satisfied. It is possible for a higher priority deadline to be
missed if its corresponding time estimate is inaccurate.

4.2 Proportional sharing

Having described how time is apportioned across different prior-
ity classes, we now describe how time allocated to each priority
class is apportioned between applications in the class. If the system
is populated with only conventional tasks, we simply divide the
cycles in proportion to the shares across the different applications.
As noted in Table 1, interactive and real-time applications may not
use up all the resources that they are entitled to. Any unused cycles
are proportionally distributed among those applications that can
consume the cycles.

4.2.1 Conventional tasks

Let us first consider conventional tasks whose virtual finishing
time has not been biased. We observe that even though real-time
tasks may not execute in the order dictated by WFQ, the scheduler
will run a real-task only if it has an earlierVFT than any of the con-
ventional tasks. Thus, by considering all the real-time tasks with an
earlier VFT as one single application with a correspondingly higher
share, we see the SMART treatment of the conventional tasks is
identical to that of a WFQ algorithm. From the analysis of the
WFQ algorithm, it is clear that conventional tasks are given their
fair shares.

A biasis addedto a task’s VFT only after it has accumulated a
significant computation time. As a fixed constant, the bias does not

O 1()

Figure 1: Example illustrating the behavior of SMART

A2 A4A0 A6B0 B1 B3 B5C C C C C

A2 A4A0 A6B0 B1 B3 B5A1 B2 A3 B4 A5

200 36040 52080 160 320 480120 240 280 400 4400

B
V

F
T

(a) Deadlines of real-time applications

(b) Schedule

(c) Biased virtual finishing time (BVFT)

Time

A
B
C
Bias of C

6

change the relative proportion between the allocation of resources.
It only serves to allow a greater variance in instantaneous fairness,
thus allowing a better interactive and real-time response in transient
overloads.

4.2.2 Real-time applications

We say that a system isunderloaded if there are sufficient cycles
to give a fair share to the conventional tasks in the system while sat-
isfying all the real-time constraints. When a system is underloaded,
the conventional tasks will be serviced often enough with the left-
over processor cycles so that they will have later BVFTs than real-
time applications. The conventional applications will therefore only
run when there are no real-time applications in the system. The
real-time tasks are thus scheduled with a strict best-effort schedul-
ing algorithm. It has been proven that in underload, the best-effort
scheduling algorithm degenerates to an earliest-deadline scheduling
algorithm [26], which has been shown to satisfy all
schedulingconstraints, periodic or aperiodic, optimally [8].

In an underloaded system, the scheduler satisfies all the real-
time applications’ requests. CPU time is given out according to the
amounts requested, which may have a very different proportion
from the shares assigned to the applications. The assigned propor-
tional shares are used in the management of real-time applications
only if the system is oversubscribed.

A real-time application whose request exceeds its fair share for
the current loading condition will eventually accumulate a BVFT
later than other applications’ BVFTs. Even if it has the earliest
deadline, it will not be run immediately if there is a conventional
application with a higher value, or if running this application will
cause a higher valued real-time application to miss its deadline. If
the application accepts notification, the system will inform the
application when it determines that the constraint will not be met.
This interface allows applications to implement their own degrada-
tion policies. For instance, a video application can decide whether
to skip the current frame, skip a future frame, or display a lower
quality image when the frame cannot be fully processed in a timely
fashion. The application adjusts the timing constraint accordingly
and informs the system. If the application does not accept notifica-
tion, however, eventually all the other applicationswill catch up
with their BVFT, and the scheduler will allow the now late applica-
tion to run.

Just as the use of BVFT regulates the fair allocation of resources
for conventional tasks, it scales down the real-time tasks propor-
tionally. In addition, the bias introduced in the algorithm, as well as
the use of a best-effort scheduler among real-time tasks with suffi-
ciently high values, allows more real-time constraints to be met.

5 Related work

Recognizing the need to provide better scheduling to support the
needs of modern applications such as multimedia, a number of
resource management mechanisms have been proposed. These
approaches can be loosely classified as real-time scheduling, fair
queueing, and hierarchical scheduling.

5.1 Real-time scheduling

Real-time schedulers such as rate-monotonic scheduling [24,
26] and earliest-deadline scheduling [8, 26] are designed to make
better use of hardware resources in meeting real-time requirements.
In particular, earliest-deadline scheduling is optimal in underload.
However, they do not perform well when the system is overloaded,
nor are they designed to support conventional applications.

Resource reservations are commonly combined with real-time
scheduling in an attempt to run real-time tasks with conventional
tasks [5, 22, 25, 28]. These approaches are used with admission

control to allow real-time tasks to reserve a fixed percentage of the
resource in accordance with their resource requirement. Any left-
over processing time is allocated to conventional tasks using a stan-
dard timesharing or round-robin scheduler.

Several differences in these reservation approaches are apparent.
While the approaches in [5, 25] take advantage of earliest-deadline
scheduling to provide optimal real-time performance in underload,
the rate monotonic utilization bound used in [28] and the time inter-
val assignment used in Rialto [22] are not optimal, resulting in
lower performance than earliest-deadline approaches. In contrast
with SMART, these approaches are more restrictive, especially in
the level of control provided for conventional tasks. They do not
provide a common mechanism for sharing resources across real-
time and conventional tasks. In particular, with conventional tasks
being given leftover processing time, their potential starvation is a
problem. This problem is exacerbated in Rialto [22] in which even
in the absence of reservations, applications with time constraints
buried in their source code are given priority over conventional
applications [21].

Note that the use of reservations relies on inflexible admission
control policies to avoid overload. This is usually done on a first-
come-first-serve basis, resulting in later arriving applications being
denied resources even if they are more important. To be able to exe-
cute later arriving applications, an as yet undetermined higher-level
resource planning policy, or worse yet, the user, must renegotiate
the resource reservations via what is at best a trial-and-error pro-
cess.

Unlike reservation mechanisms, best-effort real-time scheduling
[27] provides optimal performance in underload while ensuring that
tasks of higher priority can meet their deadlines in overload. How-
ever, it provides no way of scheduling conventional tasks and does
not support common resource sharing policies such as proportional
sharing.

By introducing admission control, SMART can also provide
resource reservations with optimal real-time performance. In addi-
tion, SMART subsumes best-effort real-time scheduling to provide
optimal performance in meeting time constraints in underload even
in the absence of reservations. This is especially important for com-
mon applications such as MPEG video whose dynamic require-
ments match poorly with static reservation abstractions [1, 16].

5.2 Fair queueing

Fair queueing provides a mechanism which allocates resources
to tasks in proportion to their shares. It was first proposed for net-
work packet scheduling in [7], with a more extensive analysis pro-
vided in [33], and later applied to processor scheduling in [40] as
stride scheduling. Recent variants [2, 38] provide more accurate
proportional sharing at the expense of additional scheduling over-
head. The share used with fair queueing can be assigned in accor-
dance with user desired allocations [40], or it can be assigned based
on the task’s resource requirement to provide resource reservations
[33, 38]. When used to provide reservations, an admission control
policy is also used.

When shares are assigned based on user desired allocations, fair
queueing provides more accurate proportional sharing for conven-
tional tasks than previous fair-share schedulers [9, 19]. However, it
performs poorly for real-time tasks because it does not account for
their time constraints. In underload, time constraints are unneces-
sarily missed. In overload, all tasks are proportionally late, poten-
tially missing all time constraints.

When shares are assigned based on task resource requirements
to provide reservations, fair queueing can be effective in underload
at meeting real-time requirements that are strictly periodic in their
computation and deadline. However, its performance is not optimal
in underload and suffers especially in the case of aperiodic real-

7

time requirements. To avoid making all tasks proportionally late in
overload, admission control is used.

Unlike real-time reservation schedulers, fair queueing can inte-
grate reservation support for real-time tasks with proportional shar-
ing for conventional tasks [38]. However, shares for real-time
applications must then be assigned based on their resource require-
ments; they cannot be assigned based on user desired allocations.

By providing time constraints and shares, SMART not only sub-
sumes fair queueing, but it can also more effectively meet real-time
requirements, with or without reservations. Unlike fair queueing, it
can provide optimal real-time performance while allowing propor-
tional sharing based on user desired allocations across both real-
time and conventional applications. Furthermore, SMART also sup-
ports simultaneous prioritized and proportional resource allocation.

5.3 Hierar chical scheduling

Because creating a single scheduler to service both real-time
and conventional resource requirements has proven difficult, a num-
ber of hybrid schemes [3, 6, 15, 16, 39] have been proposed. These
approaches attempt to avoid the problem by having statically sepa-
rate scheduling policies for real-time and conventional applications,
respectively. The policies are combined using either priorities [6,
15, 39] or proportional sharing [3, 16, 18] as the base level schedul-
ing mechanism.

With priorities, all tasks scheduled by the real-time scheduling
policy are assigned higher priority than tasks scheduled by the con-
ventional scheduling policy. This causes all real-time tasks, regard-
less of whether or not they are important, to be run ahead of any
conventional task. The lack of control results in experimentally
demonstrated pathological behaviors in which runaway real-time
computations prevent the user from even being able to regain con-
trol of the system [29].

With proportional sharing, a real-time scheduling policy and a
conventional scheduling policy are each given a proportional share
of the machine to manage by the underlying proportional share
mechanism, which then timeslices between them. Real-time appli-
cations will not take over the machine, but they also cannot meet
their time constraints effectively as a result of the underlying pro-
portional share mechanism taking the resource away from the real-
time scheduler at an inopportune and unexpected time in the name
of fairness [17].

The problem with previous mechanisms that have been used for
combining these scheduling policies is that they do not explicitly
account for real-time requirements. These schedulers rely on differ-
ent policies for different classes of computations, but they encoun-
ter the same difficulty as other approaches in being unable to
propagate these decisions to the lowest-level of resource manage-
ment where the actual scheduling of processor cycles takes place.

SMART behaves like a real-time scheduler when scheduling
only real-time requests and behaves like a conventional scheduler
when scheduling only conventional requests. However, it combines
these two dimensions in a dynamically integrated way that fully
accounts for real-time requirements. SMART ensures that more
important tasks obtain their resource requirements, whether they be
real-time or conventional. In addition to allowing a wide range of
behavior not possible with static schemes, SMART provides more
efficient utilization of resources, is better able to adapt to varying
workloads, and provides dynamic feedback to support adaptive
real-time applications that is not found in previous approaches.

6 Experimental results

We have implemented SMART in Solaris 2.5.1, the current
release of Sun Microsystems’s UNIX operating system. To demon-
strate its effectiveness, we describe two sets of experiments with a

mix of real-time, interactive and batch applications executing in a
workstation environment. The first experiment compares SMART
with two existing schedulers: the UNIX SVR4 scheduler, both real-
time (SVR4-RT) and time-sharing (SVR4-TS) policies, and a WFQ
processor scheduler. The second experiment demonstrates the abil-
ity of SMART to provide the user with predictable resource alloca-
tion controls, adapt to dynamic changes in the workload, and
deliver expected behavior when the system is not overloaded.

Three applications were used to represent batch, interactive and
real-time computations:

• Dhrystone(batch) — This is the Dhrystone benchmark (Ver-
sion 1.1), a synthetic benchmark that measures CPU integer
performance.

• Typing (interactive) — This application emulates a user typ-
ing to a text editor by receiving a series of characters from a
serial input line and using the X window server [35] to dis-
play them to the frame buffer. To enable a realistic and re-
peatable sequence of typed keystrokes for interactive
applications, a hardware keyboard simulator was constructed
and attached via a serial line to the testbed workstation. This
device is capable of recording a sequence of keyboard inputs,
and then replaying the sequence with the same timing charac-
teristics.

• Integrated Media Streams Player(real-time) — The Integrat-
ed Media Streams (IMS) Player from Sun Microsystems Lab-
oratories isa timestamp-based system capable of playing
synchronized audio and video streams. It adapts to its system
environment by adjusting the quality of playback based on
the system load.The application was developed and tuned for
the UNIX SVR4 time-sharing scheduler in the Solaris
operatingsystem. For the experiment with the SMART
scheduler, we have inserted additional system calls to the ap-
plication to take advantage of the features provided by
SMART. The details of the modifications are presented in
Section 6.1. We use this application in two different modes:

• News (real-time) — This application displays synchro-
nized audio and video streams from local storage.Each
media stream flows under the direction of an indepen-
dent thread of control. The audio and video threads
communicate through a shared memory region and use
timestamps to synchronize the display of the media
streams. The video input stream contains frames at
320x240 pixel resolution in JPEG compressed format at
roughly 15 frames/second. The audio input stream con-
tains standard 8-bit µ-law monaural samples. The cap-
tured data is from a satellite news network.

• Entertain(real-time) — This application processes vid-
eo from local storage. The video input stream contains
frames at 320x240 pixel resolution in JPEG com-
pressed format at roughly 15 frames/second. The appli-
cation scales and displays the video at 640x480 pixel
resolution. The captured data contains a mix of televi-
sion programming, including sitcom clips and commer-
cials.

The experiments were performed on a standard, production
SPARCstation 10 workstation with a single 150 MHz hyper-
SPARC processor, 64 MB of primary memory, and 3 GB of local
disk space. The testbed system included a standard 8-bit pseudo-
color frame buffer controller (i.e., GX). The display was managed
using the X Window System. The Solaris 2.5.1 operating system
was used as the basis for our experimental work.

The standard UNIX SVR4 scheduling framework upon which
the Solaris operating system is based employs a periodic 10 ms
clock tick. It is at this granularity that scheduling events can occur,
which can be quite limiting in supporting real-time computations
that have time constraints of the same order of magnitude. To allow
a much finer resolution for scheduling events, we added a high res-

8

olution timeout mechanism to the kernel and reduced the time scale
at which timer based interrupts can occur. The exact resolution
allowed is hardware dependent. On the testbed workstation used for
these experiments, the resolution is 1 ms. The high resolution tim-
ing functionality was used for all of the schedulers to ensure a fair
comparison.

All measurements were performed using a minimally obtrusive
tracing facility that logs events at significant points in application,
window system, and operating system code. This is done via a
light-weight mechanism that writes timestamped event identifiers
into a memory log. The timestamps are at 1µs resolution. We mea-
sured the cost of the mechanism on the testbed workstation to be 2-
4 µs per event. We created a suite of tools to post-process these
event logs and obtain accurate representations of what happens in
the actual system.

All measurements were performed on a fully functional system
to represent a realistic workstation environment. By a fully func-
tional system, we mean that all experiments were performed with
all system functions running, the window system running, and the
system connected to the network. At the same time, an effort was
made to eliminate variations in the test environment to make the
experiments repeatable. To this end, the testbed system was
restarted prior to each experimental run.

6.1 Programming with time constraints

The SMART application interface makes it easier to develop a
real-time application. The software developer can express the
scheduling constraints directly to the system and have the system
deliver the expected behavior. To illustrate this aspect of SMART,
we first describe what it took to develop the IMS Player for UNIX
SVR4, then discuss how we modified it for SMART.

6.1.1 Video player

The video player reads a timestamped JPEG video input stream
from local storage, uncompresses it, dithers it to 8-bit pseudo-color,
and renders it directly to the frame buffer. When the video player is
not used in synchrony with an audio player, as in the case ofEnter-
tain, the player uses the timestamps on the video input stream to
determine when to display each frame and whether a given frame is
early or late. When used in conjunction with the audio player, as in
the case ofNews, the video player attempts to synchronize its out-
put with that of the audio device. In particular, sincehumans are
more sensitive to intra-stream audio asynchronies (i.e. audio delays
and drop-outs) than to asynchronies involving video, thethread
controlling the audio stream free-runs as the master time reference
and the video “slave” thread uses the information the audio player

posts into the shared memory region to determine when to display
its frames.

If the video player is ready to display its frame early, then it
delays until the appropriate time; but if it is late, it discards its cur-
rent frame on the assumption that continued processing will cause
further delays later in the stream. The application defines early and
late as more than 20 ms early or late with respect to the audio. For
UNIX SVR4, the video player must determine entirely on its own
whether or not each video frame can be displayed on time. This is
done by measuring the amount of wall clock time that elapses dur-
ing the processing of each video frame. An exponential average
[13] of the elapsed wall clock time of previously displayed frames
is then used as an estimate for how long it will take to process the
current frame. If the estimate indicates that the frame will complete
too early (more than 20 ms early), the video player sleeps an
amount of time necessary to delay processing to allow the frame to
be completed at the right time. If the estimate indicates that the
frame will be completed too late (more than 20 ms late), the frame
is discarded.

The application adapted to run on SMART uses the same mech-
anism as the original to delay the frames that would otherwise be
completed too early. We replace the application’s discard mecha-
nism with simply a time constraint system call to inform SMART
of the time constraints for a given block of application code, along
with a signal handler to process notifications of time constraints
that cannot be met. The time constraint informs SMART of the
deadline for the execution of the block of code that processes the
video frame. The deadline is set to the time the frame is considered
late, which is 20 ms after the ideal display time. It also provides an
estimate of the amount of execution time for the code calculated in
a similar manner as the original program. In particular, an exponen-
tial average of the execution times of previously displayed frames
scaled by 10% is used as the estimate. Upon setting the given time
constraint, the application requests that SMART provide a notifica-
tion to the application right away if early estimates predict that the
time constraint cannot be met. When a notification is sent to the
application, the application signal handler simply records the fact
that the notification has been received. If the notification is received
by the time the application begins the computation to process and
display the respective video frame, the frame is discarded; other-
wise, the application simply allows the frame be displayed late.

Figure 2 indicates that simple exponential averaging based on
previous frame execution times can be used to provide reasonable
estimates of frame execution times even for JPEG compressed
video in which frame times vary from one frame to another. Note
that MPEG video would require averaging for each type of frame.
Each graph shows the actual execution time for each frame, the

Figure 2: Actual vs. estimated execution time per JPEG image

-10

0

10

20

30

40

50

0 50 100 150 200 250 300

E
xe

cu
tio

n
tim

e
pe

r
fr

am
e

(m
s)

Elapsed wall clock time (s)

Entertain

Actual

Estimate error

-10

0

10

20

30

40

50

0 50 100 150 200 250 300

E
xe

cu
tio

n
tim

e
pe

r
fr

am
e

(m
s)

Elapsed wall clock time (s)

News video

Actual

Estimate error

9

Table 2: Standalone execution times of applications

Table 3: Standalone application quality metric performance

Name Basis of MeasurementNo. of Measurements CPU Time Avg. CPU Time Std. Dev. % CPU Avg.

News audio per segment 4700 1.54 ms 0.79 ms 2.42%

News video per frame 4481 28.35 ms 2.19 ms 42.34%

Entertain per frame 4487 39.16 ms 2.71 ms 58.55%

Typing per character 1314 1.96 ms 0.17 ms 0.86%

Dhrystone per execution 1 298.73 s N/A 99.63%

Name Quality Metric On Time Early Late Dropped Avg. Std. Dev.

News audio Number of audio dropouts 100.00% 0.00% 0.00% 0.00% 0 0

News video Actual display time minus desired display time99.75% 0.09% 0.13% 0.02% 1.50 ms 2.54 ms

Entertain Actual display time minus desired display time99.58% 0.22% 0.13% 0.07% 1.95 ms 3.61 ms

Typing Delay from character input to character display100.00% N/A 0% N/A 26.40 ms 4.12 ms

Dhrystone Accumulated CPU time N/A N/A N/A N/A 298.73 s N/A

average execution time across all frames, and the difference
between the estimated and actual execution time for each frame.
The slight positive bias in the difference is due to the 10% scaling
in the estimate versus the actual execution time. As shown in the
figure, there is a wide variance in the time it takes to handle a
frame. The results also illustrate the difficulty of using a resource
reservation scheme. Using the upper bound on the processing time
as an estimate may yield a low utilization of resources; using the
average processing time may cause too many deadlines to be
missed.

6.1.2 Audio player

The audio player reads a timestamped audio input stream from
local storage and outputs the audio samples to the audio device.
The processing of the 8-bitµ-law monaural samples is done in 512
byte segments. To avoid audio dropouts, the audio player takes
advantage of buffering available on the audio device to work ahead
in the audio stream when processor cycles are available. Up to 1
second of workahead is allowed. For each block of code that pro-
cesses an audio segment, the audio player aims to complete the seg-
ment before the audio device runs out of audio samples to display.
The deadline communicated to SMART is therefore set to the dis-
play time of the last audio sample in the buffer. The estimate of the
execution time is again computed by using an exponential average
of the measured execution times for processing previous audio seg-
ments. Audio segments that cannot be processed before their dead-
lines are simply displayed late. Note that because of the workahead
feature and the audio device buffering, the resulting deadlines can
be highly aperiodic.

6.2 Application characteristics and quality metrics

Representing different classes of applications,Typing, Dhrys-
tone, News and Entertain have very different characteristics and
measures of quality. For example, we care about the response time
for interactive tasks, the throughput of batch tasks and the number
of deadlines met in real-time tasks. Before discussing how a combi-
nation of these applications executes on different schedulers, this
section describes how we measure the quality of each of the differ-
ent applications, and how each would perform if it were to run on
its own.

Table 2 shows the execution time of each application on an oth-
erwise quiescent system using the UNIX SVR4 scheduler, mea-
sured over a time period of 300 seconds. We note that there is no
significant difference between the performance of different

schedulerswhen running only one application. The execution times
include user time and system time spent on behalf of an application.
TheDhrystone batch application can run whenever the processor is
available and can thus fully utilize the processor. The execution of
other system functions (fsflush, window system, etc.) takes less
than 1% of the CPU time. The measurements on the real-time
applications are taken every frame, and those forTyping are taken
every character. None of the real-time and interactive applications
can take up the whole machine on its own, with bothNews audio
andTyping taking hardly any time at all. The video forNews takes
up 42% of the CPU, whereasEntertain, which displays scaled
video, takes up almost 60% of the processor time.

For each application, the quality of metric is different. For Typ-
ing, it is desirable to minimize the time between user input and sys-
tem response to a level that is faster than what a human can readily
detect. This means that for simple tasks such as typing, cursor
motion, or mouse selection, system response time should be less
than 50-150 ms [37]. As such, we measured theTyping character
latency and determine the percentage of characters processed with
latency less than 50 ms, with latency between 50-150 ms, and with
latency greater than 150 ms. For News audio, it is desirable not to
have any artifacts in audio output. As such, we measured the num-
ber ofNews audio samples dropped. For News video andEntertain,
it is desirable to minimize the difference between the desired dis-
play time and the actual display time, while maximizing the num-
ber of frames that are displayed within their time constraints. As
such, we measured the percentage ofNews and Entertain video
frames that were displayed on time (displayed within 20 ms of the
desired time), displayed early, displayed late, and the percentage of
frames dropped not displayed. Finally, for batch applications such
as Dhrystone, it is desirable to maximize the processing time
devoted to the application to ensure as rapid forward progress as
possible. As such, we simply measured the CPU timeDhrystone
accumulated. To establish a baseline performance, Table 3 shows
the performance of each application when it was executed on its
own.

While measurements of accumulated CPU time are straightfor-
ward, we note that several steps were taken to minimize and quan-
tify any error in measuring audio and video performance as well as
interactive performance. For News andEntertain, the measurements
reported here are performed by the respective applications them-
selves during execution. We also quantified the error of these inter-
nal measurements by using a hardware device to externally measure
the actual user perceived video display and audio display times
[36]. External versus internal measurements differed by less than 10
ms. The difference is due to the refresh time of the frame buffer.

10

For Typing, we measured the end-to-end character latency from the
arrival of the character to the system in the input device driver,
through the processing of the character by the application, until the
actual display of the character by the X window system character
display routine.

6.3 Scheduler characteristics

To provide a characterization of scheduling overhead, we mea-
sured the context switch times for the UNIX SVR4, WFQ, and
SMART schedulers. Average context switch times for UNIX
SVR4, WFQ, and SMART are 27µs, 42µs, and 47µs, respec-
tively. These measurements were obtained running the mixes of
applications described in this paper. Similar results were obtained
when we increased the number of real-time multimedia applications
in the mix up to 15, at which point no further multimedia applica-
tions could be run due to there being no more memory to allocate to
the applications.

The UNIX SVR4 context switch time essentially measures the
context switch overhead for a scheduler that takes almost no time to
decide what task it needs to execute. The scheduler simply selects
the highest priority task to execute, with all tasks already sorted in
priority order. Note that this measure does not account for the peri-
odic processing done by the UNIX SVR4 timesharing policy to
adjust the priority levels of all tasks. Such periodic processing is not
required by WFQ or SMART, which makes the comparison of
overhead based on context switch times more favorable for UNIX
SVR4. Nevertheless, as tasks are typically scheduled for time
quanta of several milliseconds, the measured context switch times
for all of the schedulers were not found to have a significant impact
on application performance.

For SMART, we also measured the cost to an application of
assigning scheduling parameters such as time constraints or reading
back scheduling information. The cost of assigning scheduling
parameters to a task is 20µs while the cost of reading the schedul-
ing information for a task is only 10µs. The small overhead easily
allows application developers to program with time constraints at a
fine granularity without much penalty to application performance.

6.4 Comparison of default scheduler behavior

Our first experiment is simply to run all four applications(News,
Entertain, Typing, andDhrystone) with the default user parameters
for each of the schedulers:

• SVR4-RT: The real-timeNews andEntertain applications are
put in the real-time class, leaving Typing andDhrystone in the
time-sharing class.

• SVR4-TS: All the applications are run in time-sharing mode.
(We also experimented with puttingTyping in the interactive
application class and obtained slightly worse performance.)

• WFQ: All the applications are run with equal share.
• SMART: All the applications are run with equal share and

equal priority.
Because of their computational requirements, the execution of

these applications results in the system being overloaded. In fact,
the News video and theEntertain applications alone will fully
occupy the machine. Both theTyping andNews audio applications
hardly use any CPU time, taking up a total of only 3-4% of the
CPU time. It is thus desirable for the scheduler to deliver short
latency on the former application and meet all the deadlines on the
latter application. With the default user parameters in SVR4-TS,
WFQ, and SMART, we expect the remainder of the computation
time to be distributed evenly betweenNews video, Entertain, and
Dhrystone. Even with anideal scheduler, we expect the percentages
of the frames dropped to be 25% and 45% forNews video
andEntertain, respectively.

Figure 3 presents the CPU allocation across different applica-
tions by different schedulers. It includes the percentage of the CPU
used for executing other system functions such as the window sys-
tem (labeledOther). The figure also includes the expected result of
an ideal scheduler for comparison purposes. For the real-time appli-
cations, the figure also shows the percentages of media units that
are displayed on-time, early, late,or dropped. For the interactive
Typing application, the figure shows the number of characters that
take less than 50 ms to display, take 50-150 ms to display, and take
longer than 150 ms to display. Figure 4 presents more detail by
showing the distributions of the data points. We have also included
the measurements for each of the applications running by itself
(labeledStandalone) in the figure. We observe that every scheduler
handles theNews audio application well with no audio dropouts.
Thus we will only concentrate on discussing the quality of the rest
of the applications.

Unlike the other schedulers, the SVR4-RT scheduler gives
higher priority to applications in the real-time class. It devotes most
of the CPU time to the video applications, and thus drops the least
number of frames. (Nevertheless, SMART is able to deliver more
on-time frames than SVR4-RT for theNews video, while using less
resources.) Unfortunately, SVR4-RT runs the real-time applications
almost to the exclusion of conventional applications.Dhrystone
gets only 1.6% of the CPU time. More disturbingly, the interactive
Typing application does not get even the little processing time
requested, receiving only 0.24% of the CPU time. Only 635 out of
the 1314 characters typed are even processed within the 300 second
duration, and nearly all the characters processed have an unaccept-
able latency of greater than 150 ms. Note that puttingTyping in the

Figure 3: Comparison of scheduler application performance

|� |�0

|�20

|�40

|�60

|�80

|�100

 P
er

ce
nt

 o
f t

ot
al

 m
ed

ia
 u

ni
ts

�

Scheduler used
Id

ea
l

S
V

R
4

R
T

S
V

R
4

T
S

W
F

Q
S

M
A

R
T

News audio

Id
ea

l

S
V

R
4

R
T

S
V

R
4

T
S

W
F

Q
S

M
A

R
T

News video

Dropped
Late
Early
On Time

|� |�0

|�20
|�40

|�60

|�80

|�100

 P
er

ce
nt

 o
f t

ot
al

 c
ha

ra
ct

er
s

ty
pe

d

�

Scheduler used

Typing�

Id
ea

l

S
V

R
4

R
T

S
V

R
4

T
S

W
F

Q
S

M
A

R
T

Unprocessed
Latency > 150ms
Latency 50-150ms
Latency < 50ms

|� |�0

|�20

|�40

|�60

|�80

|�100

 P
er

ce
nt

 C
P

U
 u

sa
ge

�

Scheduler used

CPU allocation

Id
ea

l

S
V

R
4-

R
T

S
V

R
4-

T
S

W
F

Q
S

M
A

R
T

Other
News audio
News video
Entertain
Typing
Dhrystone

|� |�0

|�20

|�40

|�60

|�80

|�100

 P
er

ce
nt

 o
f t

ot
al

 fr
am

es

�

Scheduler used

Id
ea

l

S
V

R
4

R
T

S
V

R
4

T
S

W
F

Q
S

M
A

R
T

Entertain�

Dropped
Late
Early
On Time

11

Figure 4: Distrib utions of quality metrics

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250C
um

ul
at

iv
e

pe
rc

en
t o

f t
ot

al
 c

ha
ra

ct
er

s
ty

pe
d

Character latency (ms)

Typing

Standalone
SVR4-RT
SVR4-TS

WFQ
SMART

0

5

10

15

20

25

30

-100 -50 0 50 100 150 200

P
er

ce
nt

 o
f t

ot
al

 fr
am

es
�

Actual minus desired display time (ms)

News video

Standalone
SVR4-RT
SVR4-TS

WFQ
SMART

0

5

10

15

20

25

30

-100 -50 0 50 100 150 200

P
er

ce
nt

 o
f t

ot
al

 fr
am

es

�

Actual minus desired display time (ms)

Entertain

Standalone
SVR4-RT
SVR4-TS

WFQ
SMART

0

50

100

150

200

250

300

0 50 100 150 200 250 300

A
cc

um
ul

at
ed

 e
xe

cu
tio

n
tim

e
(s

)

�

Elapsed wall clock time (s)

Dhrystone

Standalone
SVR4-RT
SVR4-TS

WFQ
SMART

real-time class does not alleviate this problem as the system-level
I/O processing required by the application is still not able to run,
because system functions are run at a lower priority than real-time
tasks. Clearly, it is not acceptable to use the SVR4-RT scheduler.

All the other schedulers spread the resources relatively evenly
across the three demanding applications. The SVR4-TS scheduler
has less control over the resource distribution than WFQ and
SMART, resulting in a slight bias towards Entertain over Dhrys-
tone. The basic principles used to achieve fairness across applica-
tions are the same in WFQ and SMART. However, we observe that
WFQ scheduler devotes slightly more (3.8%) CPU time toDhrys-
tone at the expense ofNews video. This effect can be attributed to
the standard implementation of WFQ processor scheduling
whereby the proportional share of the processor obtained by a task
is based only on the time that the task is runnable and does not
include any time that the task is sleeping.

Since the video applications either process a frame or discard a
frame altogether from the beginning, the number of video frames
dropped is directly correlated with the amount of time devoted by
the scheduler to the applications, regardless of the scheduler used.
The difference in allocation accounts for the difference in the num-
ber of frames dropped between the schedulers. We found that in
each instance the scheduler drops about 6-7% more frames than the
ideal computed using average computation times and the sched-
uler’s specific allocation for the application.

The schedulers are distinguished by their ability to meet the
time constraints of those frames processed. SMART meets a signif-
icantly larger number of time constraints than the other schedulers,
delivering over 250% more video frames on time than SVR4-TS
and over 60% more video frames on time than WFQ. SMART’s
effectiveness holds even for cases where it processes a larger total
number of frames, as in the comparison with WFQ. Moreover, as

shown in Figure 4, the late frames are handled soon after the dead-
lines, unlike the case with the other schedulers. As SMART delivers
a more predictable behavior, the applications are better at determin-
ing how long to sleep to avoid delay displaying the frames too
early. As a result, there is a relatively small number of early frames.
It delivers on time 57% and 37% of the total number of frames in
News video andEntertain, respectively. They represent, respec-
tively, 86% and 81% of the frames displayed.

To understand the significance of the bias introduced to improve
the real-time and interactive application performance, we have also
performed the same experiment with all biases set to zero. The use
of the bias is found to yield a 10% relative improvement on the
scheduler’s ability in delivering theEntertain frames on time.

In contrast, the WFQ delivers 32% and 26% of the total frames
on time, which represents only 53% and 58% of the frames pro-
cessed. There are many more late frames in the WFQ case than in
SMART. The tardiness causes the applications to initiate the pro-
cessing earlier, thus resulting in a correspondingly larger number of
early frames. The SVR4-TS performs even more poorly, delivering
15% and 11% of the total frames, representing only 22% and 21%
of the frames processed. Some of the frames handled by SVR4-TS
are extremely late, causing many frames to be processed extremely
early, resulting in a very large variance in display time across
frames.

Finally, as shown in Figure 4, SMART is superior to both
SVRT-TS and WFQ in handling theTyping application. SMART
has the least average and standard deviation in character latency
and completes the most number of characters in less than 50 ms,
the threshold of human detectable delay.

While both SMART and WFQ deliver acceptable interactive
performance,Typing performs worse with WFQ because a task
does not accumulate any credit at all when it sleeps. We performed

12

an experiment where the WFQ algorithm is modified to allow the
blocked task to accumulate limited credit just as it would when run
on the SMART scheduler. The result is thatTyping improves signif-
icantly, and the video application gets a fairer share of the
resources. However, even though the number of dropped video
frames is reduced slightly, the modified WFQ algorithmhas
roughly the same poor performance as before when it comes to
delivering the frames on time.

6.5 Adjusting the allocation of resources

Besides being effective for real-time applications, SMART has
the ability to support arbitrary shares and priorities and to adapt to
different system loads. We illustrate these features by running the
same set of applications from before with different priority and
share assignments under different system loads. In particular, News
is given a higher priority than all the other applications,Entertain is
given the default priority and twice as many shares as any other
application, and all other applications are given the same default
priority and share. This level of control afforded by SMART's pri-
orities and shares is not possible with other schedulers. The experi-
ment can be described in two phases:

• Phase 1: Run all the applications for the first 120 seconds of
the experiment.News exits after the first 120 seconds of the
experiment, resulting in a load change.

• Phase 2: Run the remaining applications for the remaining
180 seconds of the experiment.

BesidesNews and Entertain, the only other time-consuming
application in the system isDhrystone. Thus, in the first part of the
experiment,News should be allowed to use as much of the proces-
sor as necessary to meet its resource requirements since it is higher
priority than all other applications. SinceNews audio uses less than
3% of the machine andNews video uses only 42% of the machine
on average, over half of the processor’s time should remain avail-
able for running other applications. AsTyping consumes very little
processing time, almost all of the remaining computation time
should be distributed betweenEntertain andDhrystone in the ratio
2:1. The time allotted toEntertain can service at most 62% of the
deadlines on average. WhenNews finishes, however, Entertain is
allowed to take up to 2/3 of the processor, which would allow the
application to run at full rate. The system is persistently overloaded
in Phase 1 of the experiment, and on average underloaded in Phase
2, though transient overloads may occur due to fluctuations in pro-
cessing requirements.

Figure 5 shows the CPU allocation and quality metrics of the
different applications run under SMART as well as an ideal sched-
uler. (Distributions of the data points are not included here due to
lack of space.) The figure shows that SMART’s performance comes

quite close to the ideal. First, it implements proportional sharing
well in both underloaded and overloaded conditions. Second,
SMART performs well for higher priority real-time applications
and real-time applications requesting less than their fair share of
resources. In the first phase of the computation, it provides perfect
News audio performance, and delivers 97% of the frames ofNews
video on time and meets 99% of the deadlines. In the second phase,
SMART displays 98% of theEntertain frames on time and meets
99% of the deadlines. Third, SMART is able to adjust the rate of
the application requesting more than its fair share, and can meet a
reasonable number of its deadlines. In the first phase forEntertain,
SMART drops only 5% more total number of frames than the ideal,
which is calculated using average execution times and an allocation
of 33% of the processor time. Finally, SMART provides excellent
interactive response forTyping in both overloaded and underloaded
conditions. 99% of the characters are displayed with a delay unno-
ticeable to typical users of less than 100 ms [4].

7 Concluding remarks

Our experiments in the context of a full featured, commercial,
general-purpose operating system show that SMART: (1) reduces
the burden of writing adaptive real-time applications, (2) has the
ability to cooperate with applications in managing resources to
meet their dynamic time constraints, (3) provides resource sharing
across both real-time and conventional applications, (4) delivers
improved real-time and interactive performance over other schedul-
ers without any need for users to reserve resources, adjust schedul-
ing parameters, or know anything about application requirements,
(5) provides flexible, predictable controls to allow users to bias the
allocation of resources according to their preferences. SMART
achieves this range of behavior by differentiating between the
importance and urgency of real-time and conventional applications.
This is done by integrating priorities and weighted fair queueing for
importance, then using urgency to optimize the order in which tasks
are serviced based on earliest-deadline scheduling. Our measured
performance results demonstrate SMART’s effectiveness over that
of other schedulers in supporting multimedia applications in a real-
istic workstation environment.

Acknowledgments

We thank Jim Hanko, Duane Northcutt, and Brian Schmidt for
their help with the applications and measurement tools used in our
experiments. We also thank Jim, Duane, Amy Lim, Mendel Rosen-
blum, Alice Yu, Rich Draves, and the conference referees for help-
ful comments on earlier drafts of this paper. This work was

Figure 5: SMART application performance under a changing load when using end user controls

|� |�0

|�20

|�40

|�60

|�80

|�100
 P

er
ce

nt
 C

P
U

 u
sa

ge

�

CPU allocation

Id
ea

l
S

M
A

R
T

Phase 1�

Id
ea

l
S

M
A

R
T

Phase 2�

Other
News audio
News video
Entertain
Typing
Dhrystone

|� |�0

|�20
|�40

|�60

|�80

|�100

 P
er

ce
nt

 o
f t

ot
al

 c
ha

ra
ct

er
s

ty
pe

d

�

Typing�

Id
ea

l
S

M
A

R
T

Phase 1�

Id
ea

l
S

M
A

R
T

Phase 2�

Latency > 150ms
Latency 50-150ms
Latency < 50ms

|� |�0

|�20

|�40

|�60

|�80

|�100

 P
er

ce
nt

 o
f t

ot
al

 m
ed

ia
 u

ni
ts

�

News audio News video

Id
ea

l
S

M
A

R
T

Phase 1�

Id
ea

l
S

M
A

R
T

Phase 1�

Skipped
Late
Early
On Time

|� |�0

|�20

|�40

|�60

|�80

|�100

 P
er

ce
nt

 o
f t

ot
al

 fr
am

es

�

Entertain�

Id
ea

l
S

M
A

R
T

Phase 1�

Id
ea

l
S

M
A

R
T

Phase 2�

Skipped
Late
Early
On Time

13

supported in part by an NSF Young Investigator Award and Sun
Microsystems Laboratories.

References

1. V. Baiceanu, C. Cowan, D. McNamee, C. Pu, J. Walpole, “Multimedia
Applications Require Adaptive CPU Scheduling”, Proceedings of the
IEEE RTSS Workshop on Resource Allocation Problems in Multimedia
Systems, Washington, DC, Dec. 1996.

2. J. C. R. Bennett, H. Zhang, “WF2Q: Worst-case Fair Weighted Fair
Queueing”, IEEE INFOCOM ‘96, San Francisco, CA, pp. 120-128,
Mar. 1996.

3. G. Bollella, K. Jeffay, “Support for Real-Time Computing Within
General Purpose Operating Systems: Supporting Co-Resident Operating
Systems”, Proceedings of the IEEE Real-Time Technology and
Applications Symposium, Chicago, IL, pp. 4-14, May 1995.

4. S. K. Card, T. P. Moran, A. Newell, The Psychology of Human-
Computer Interaction, L. Erlbaum Associates, Hillsdale, NJ, 1983.

5. G. Coulson, A. Campbell, P. Robin, G. Blair, M. Papathomas, D.
Hutchinson, “The Design of a QoS Controlled ATM Based
Communications System in Chorus”,IEEE JSAC, 13(4), pp. 686-699,
May 1995.

6. H. Custer, Inside Windows NT, Microsoft Press, Redmond, WA, 1993.
7. A. Demers, S. Keshav, S. Shenker, “Analysis and Simulation of a Fair

Queueing Algorithm”,Proceedings of SIGCOMM ‘89, pp. 1-12, Sept.
1989.

8. M. Dertouzos, “Control Robotics: The Procedural Control of Physical
Processors”,Proceedings of the IFIP Congress, Stockholm, Sweden,
pp. 807-813, Aug. 1974.

9. R. B. Essick, “An Event-based Fair Share Scheduler”,Proceedings of
the 1990 Winter USENIX Conference, Washington, DC, pp. 147-161,
Jan. 1990.

10. S. Evans, K. Clarke, D. Singleton, B. Smaalders, “Optimizing Unix
Resource Scheduling for User Interaction”,Proceedings of the 1993
Summer USENIX Conference, Cincinnati, OH, pp. 205-218, June 1993.

11. J. R. Eykholt, S. R. Kleiman, S. Barton, R. Faulkner, A. Shivalingiah,
M. Smith, D. Stein, J. Voll, M. Weeks, D. Williams, “Beyond
Multiprocessing...Multithreading the SunOS Kernel”, Proceedings of
the 1992 Summer USENIX Conference, San Antonio, TX, pp. 11-18,
June 1992.

12. P. Ffoulkes, D. Wikler, “Workstations Worldwide Market
Segmentation”, Advanced Desktops and Workstations Worldwide,
Dataquest, June 1997.

13. N. G. Fosback,Stock Market Logic, Institute for Econometric Research,
Ft. Lauderdale, FL, 1976.

14. L. Georgiadis, R. Guérin, V. Peris, K. N. Sivarajan, “Efficient Network
QoS Provisioning Based on per Node Traffic Shaping”, IEEE/ACM
Transactions on Networking, 4(4), pp. 482-501, Aug. 1996.

15. D. B. Golub, “Operating System Support for Coexistence of Real-Time
and Conventional Scheduling”, Technical Report CMU-CS-94-212,
School of Computer Science, Carnegie Mellon University, Nov. 1994.

16. P. Goyal, X. Guo, H. M. Vin, “A Hierarchical CPU Scheduler for
Multimedia Operating Systems”,Proceedings of the Second Symposium
on Operating Systems Design and Implementation, Seattle, WA, pp.
107-122, Oct. 1996.

17. P. Goyal, Panel talk at theIEEE RTSS Workshop on Resource Allocation
Problems in Multimedia Systems, Washington, DC, Dec. 1996.

18. J. G. Hanko, “A New Framework for Processor Scheduling in UNIX”,
Abstract talk at theFourth International Workshop on Network and
Operating Systems Support for Digital Audio and Video, Lancaster, U.
K., Nov. 1993.

19. G. J. Henry, “The Fair Share Scheduler”, AT&T Bell Laboratories
Technical Journal, 63(8), pp. 1845-1858, Oct. 1984.

20. IEEE Micro, 15(4), Aug. 1996.
21. M. B. Jones, personal communication, July 1997.
22. M. B. Jones, D. Rosu, M-C. Rosu, “CPU Reservations and Time

Constraints: Efficient, Predictable Scheduling of Independent
Activities”, Proceedings of the Sixteenth ACM Symposium on Operating
Systems Principles, St. Malo, France, Oct. 1997.

23. S. J. Leffler, M. K. McKusick, M. J. Karels, J. S. Quarterman,The
Design and Implementation of the 4.3BSD UNIX Operating System,
Addison-Wesley, Reading, MA, 1989.

24. J. Lehoczky, L. Sha, Y. Ding, “The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior”,
Proceedings of the IEEE Real-Time Systems Symposium, pp. 166-171,
Dec. 1989.

25. I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R.
Fairbairns, E. Hyden, “The Design and Implementation of an Operating
System to Support Distributed Multimedia Applications”,IEEE JSAC,
14(7), pp. 1280-1297, Sept. 1996.

26. C. L. Liu, J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment”, JACM, 20(1),
pp. 46-61, Jan. 1973.

27. C. D. Locke, “Best-Effort Decision Making for Real-Time Scheduling”,
Ph.D. Thesis, Department of Computer Science, Carnegie Mellon
University, May 1986.

28. C. W. Mercer, S. Savage, H. Tokuda, “Processor Capacity Reserves:
Operating System Support for Multimedia Applications”,Proceedings
of the IEEE International Conference on Multimedia Computing and
Systems, Boston, MA, pp. 90-99, May 1994.

29. J. Nieh, J. G. Hanko, J. D. Northcutt, G. A. Wall, “SVR4 UNIX
Scheduler Unacceptable for Multimedia Applications”,Proceedings of
the Fourth International Workshop on Network and Operating Systems
Support for Digital Audio and Video, Lancaster, U. K., pp. 35-48, Nov.
1993.

30. J. Nieh, M. S. Lam, “SMART UNIX SVR4 Support for Multimedia
Applications”, Proceedings of the IEEE International Conference on
Multimedia Computing and Systems, Ottawa, Canada, pp. 404-414, June
1997.

31. J. D. Northcutt, Mechanisms for Reliable Distributed Real-Time
Operating Systems: The Alpha Kernel, Academic Press, Boston, MA,
1987.

32. J. D. Northcutt, E. M. Kuerner, “System Support for Time-Critical
Applications”, Proceedings of the Second International Workshop on
Network and Operating Systems Support for Digital Audio and Video,
Lecture Notes in Computer Science, Vol. 614, Heidelberg, Germany, pp.
242-254, Nov. 1991.

33. A. K. Parekh, R. G. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The Single-
Node Case”,IEEE/ACM Transactions on Networking, pp. 344-357,
June 1993.

34. “PointCast Unveils First News Network that Reaches Viewers at Their
Desktops”, Press Release, PointCast Inc., San Francisco, CA, Feb. 13,
1996.

35. R. W. Scheifler, J. Gettys, “The X Window System,ACM Transactions
on Graphics, 5(2), pp. 79-109, Apr. 1986.

36. B. K. Schmidt, “A Method and Apparatus for Measuring Media
Synchronization”,Proceedings of the Fifth International Workshop on
Network and Operating Systems Support for Digital Audio and Video,
Durham, NH, pp. 203-214, Apr. 1995.

37. B. Shneiderman,Designing the User Interface: Strategies for Effective
Human-Computer Interaction, 2nd ed., Addison-Wesley, Reading, MA,
1992.

38. I. Stoica, H. Abdel-Wahab, K. Jeffay, “On the Duality between
Resource Reservation and Proportional Share Resource Allocation”,
Multimedia Computing and Networking Proceedings, SPIE Proceedings
Series, Vol. 3020, San Jose, CA, pp. 207-214, Feb. 1997.

39. UNIX System V Release 4 Internals Student Guide, Vol. I, Unit 2.4.2.,
AT&T, 1990.

40. C. A. Waldspurger, “Lottery and Stride Scheduling: Flexible
Proportional-Share Resource Management”, Ph.D. Thesis, Department
of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Sept. 1995.

14

