Appears inProceedings of the Sixteenth ACM Symposium on Operating Systems Pritigiéedo, France, October, 1997.

The Design, Implementation and Ealuation of SMART:
A Scheduler br Multimedia A pplications

Jason Nieh? and Monica S. Lam
1Computer Systems LaboratpBtanford Uniersity
2Sun Microsystems Laboratories

Abstract

The problems xperienced by users of multimedia on these

machines include video jittepoor “lip-synchronization” between

Real-time applications such as multimedia audio and video areaudio and video, and slointeractve response while running video

increasingly populating thearkstation desktop.dl'support thexa-
cution of these applications in conjunction with traditional non-real-
time applications, we la created SMAR a Scheduler for Multi-
media And Real-ime applications. SMAR supports applications
with time constraints, and prioles dynamic feedback to applica-
tions to allev them to adapt to the current load. In addition, the sup-
port for real-time applications is imgeated with the support for
conventional computations. This alls the user to prioritize across
real-time and carentional computations, and dictateahthe pro-
cessor is to be shared among applications of the same prity
the system load changes, SMRRadjusts the allocation of
resources dynamically and seamlesS8MART is unique in its
ability to automatically shed real-time tasks angltate their ge-
cution rates when the system igedoaded, while pniding better
value in underloaded conditions thanyimesly proposed schemes.
We hae implemented SMAR in the Solaris UNIX operating sys-
tem and measured its performancaiast other schedulers ines
cuting real-time, interaate, and batch applications. Our results
demonstrate SMARSs superior performance in supporting multi-
media applications.

1 Intr oduction

The workload on computers is rapidly changing. In the past,
computers were used in automating tasks around ¢k place,
such as wrd and accounts processing ifics, and design auto-
mation in engineering gmonments. The human-computer inter-
face has been primarily xteal, with some limited amount of
graphical input and display\ith the phenomenal impvement in
hardware technology in recent yearsier highly afordable per-
sonal computers are capable of supporting much richeraogsf
Images, video, audio, and interaetigraphics ha& become com-
mon place. A gneing number of multimedia applications axai
able, ranging from videoagnes and mae players, to sophisticated
distributed simulation and virtual reality ¥ronmentsin anticipa-
tion of a wider adoption of multimedia in applications in the future,
there has been much research angldpment actiity in computer
architecture for multimedia applications. Not only is there a prolif-
eration of processors that angilbfor accelerating thexecution of
multimedia applications, ven general-purpose microprocessors
have incorporated special instructions to speed tixeicwion [20].

While hardvare has adnced to meet the special demands of
multimedia applications, sofwe ewnironments hee not. In partic-
ular, multimedia applications ke real-time constraints which are
not handled well by today’ general-purpose operating systems.

applications. Commercial operating systems such as UNIX SVR4
[39] attempt to address these problems byidiog a real-time

scheduler in addition to a standard time-sharing schedtier-

ever, such lybrid schemes lead toxgerimentally demonstrated
unacceptable beb@r, allowing runavay real-time actities to
cause basic system services to lock up, and the user to lose control
over the machine [29].

This paper ajues for the need to design amngrocessor sched-
uling algorithm that can handle the mix of applications we see

today We present a scheduling algorithm which weehanple-

mented in the Solaris UNIX operating system [11], and demon-

strate its impreed performance wer &isting schedulers on real

applications.

1.1 Demands of multimedia applications on pocessor

scheduling

To understand the requirements imposed by multimedia applica-

tions on processor scheduling, we first describe the salient features

of these applications and their special demands that distinguish

them from the corentional (non-real-time) applications current

operating systems are designed for:

 Soft eal-time constints. Real-time applications ke appli-
cation-specific timing requirements that need to be met [31].
For example in the case of video, time constraints arise due to
the need to display video in a smooth and synchronizsd w
often synchronized with audioirfie constraints may be peri-
odic or aperiodic in nature. Unékcorventional applications,
tardy results are often of littlealue; it is often preferable to
skip a computation than txecute it late. Unlik hard real-
time ewironments, missing a deadline only diminishes the
quality of the results and does not lead to catastropiilic f
ures.

* Insatiable esouce demands anddguent gerload. Multi-
media applications present practically an insatiable demand
for resources. dday video playback windes are typically
tiny at full display rate because of incient processorye
cles to leep up at full resolution. As applications such as real-
time video are highly resource intarsiand can consume the
resources of an entire machine, resources are commonly
overloaded, with resource demandeeding its aailability.

» Dynamically adaptive applicationsVhen resources areear-
loaded and not all time constraints can be met, multimedia
applications are often able to adapt angraée gracefully by
offering a diferent quality of service [32]. &f example, a
video application may choose to skip some frames or display
at a laver image quality when not all frames can be pro-
cessed in time.

» Co-«istence with corentional computationsReal-time ap-

plications must share the desktop with alreaxigtieg con-
ventional applications, such aom processors, compilers,

etc. Real-time tasks should noways be allwed to run in
preference to all other tasks becausg thay stare out im-
portant comentional actiities, such as those required &ek

the system running. Moreer, users wuld like to be able to
combine real-time and ceentional computations together in
new applications, such as multimedia documents, which mix
text and graphics as well as audio and video. In @y w
should the capabilities of a multiprogrammedrkstation be
reduced to a single function commodity Ws$@n set in order

to meet the demands of multimedia applications.

» Dynamic emironmentUnlike static embedded real-timeven
ronments, wrkstation users run an often changing mix of ap-
plications, resulting in dynamicallyawing loads.

» User pefeences.Different users may ke different prefer-
ences, for xample, in rgard to trading dfthe speed of a
compilation \ersus the display quality of a video, depending
on whether the video is part of an important teleconferencing
session or just a telsion shav being watched while \aiting
for an important computational application to complete.

1.2 Overview of this paper

This paper proposes SMAR(Scheduler for Multimedia And
Real-Time applications), a processor schedufeat fully supports
the application characteristics describedvaeb&MART consists of
a simple application inteate and a scheduling algorithm that tries
to deliver the bestwerall value to the useSMART supports appli-
cations with time constraints, and yides dynamic feedback to
applications to al them to adapt to the current load. In addition,
the support for real-time applications is gred with the support
for corventional computations. This alls the user to prioritize
across real-time and ogentional computations, and dictatewho

station operating systems used in current practice [12], and WFQ,
which has been the subject of much attention in current research [2,
7, 33, 38, 40]. Thexperiment shars that SMAR is superior to the
other algorithms in the case of ankstation eerloaded with real-
time actvities. In the gperiment, SMAR delvers aer 250%
more real-time multimedia data on time than UNIX SVR4 time-
sharing and wer 60% more real-time multimedia data on time than
WFQ, while also praiding better interacte response. The second
experiment demonstrates the ability of SMAR (1) pravide the

user with predictable controler resource allocation, (2) adapt to
dynamic changes in theorkload and (3) deler expected behaor
when the system is noverloaded.

The paper is ganized as follws. Section 2 introduces the
SMART application intedice and usage model. Section 3 describes
the SMART scheduling algorithm. ¥ start with the eerall ratio-
nale of the design and the major concepts, then present the algo-
rithm itself, folloved by an rample to illustrate the algorithm.
Despite the simplicity of the algorithm, the beioa it provides is
rather rich. Section 4 analyzes thdetint aspects of the algorithm
and shaws hav the algorithndelivers behaior consistent with its
principles of operations. Section 5 ypides a comparison with
related vork. Section 6 presents a set @perimental results, fol-
lowed by some concluding remarks.

2 The SMART interface and usage model

The SMAR interface proides to the application deloper
time constaints and notificationsfor supporting applications with
real-time computations, and prdes to the user of applicatiops-
orities and shaes for predictable control w@r the allocation of
resources. Anwervien of the interéice is presented here. A more
detailed description can be found in [30].

the processor is to be shared among applications of the same prior- Multimedia application deelopers aredced with the problem

ity. As the system load changes, SMARdjusts the allocation of
resources dynamically and seamlesSWART is unique in its
ability to automatically shed real-time tasks argutate their re-
cution rates when the system igedoaded, while prnading better
value in underloaded conditions thanvpesly proposed schemes.
SMART achiees this behaor by reducing this comple
resource management problem into tdecisions, one based on
importanceto determine thewerall resource allocation for each
task, and the other basedumencyto determine when each task is
given its allocation. SMAR provides a common importance
attribute for both real-time and ceentional tasks based on priori-
ties and weightedafr queueing (WFQ) [7]. SMAR then uses an

of writing applications with time constraints. heypically knav

the deadlines that must be met in these applications amd hoo

to allowv these applications to geade gracefully when not all time
constraints can be met. The problem is that current operating sys-
tem practice, as typified by UNIX, does not\pde an adequate
amount of functionality for supporting these applicationsr F
example, in dealing with time under UNIX, an application can tell
the scheduler to delay a computation by “sleeping” for a duration of
time. An application can also obtain simple timing information
such as elapsedall clock time and accumulatecesution time.
However, it cannot ask the scheduler to complete a computation
before a gien deadline, nor can it ask the scheduler whether or not

urgeny mechanism based on earliest-deadline scheduling [26] toit is possible for the computation to complete beforevargdead-

optimize the order in which tasks are serviced towalleal-time
tasks to mal the most éitient use of their resource allocations to
meet their time constraints. In addition, a bias onventional
batch tasks that accounts for their ability to tolerate mareed/
service latencies is used tosgjiinteractie and real-time tasks bet-
ter performance during periods of transievgrtoad.

This paper also presents sompearimental data on the SMAR

line. The lack of system supportaeerbates the di€ulty of writ-
ing applications with time constraints and results in poor
application performance.

By providing explicit time constraints, SMAR allows applica-
tions to communicate their timing requirements to the system. A
time constraint consists of a deadline and an estimate of the pro-
cessing time required to meet the deadline. An application can

algorithm, based on our implementation of the scheduler in theinform the scheduler that avgn block of code has a certain dead-

Solaris UNIX operating system. &\present tw sets of data, both
of which are based on aovkstation verkload consisting of real
multimedia applications running with represenetibatch and
interactve applications. & the multimedia application, we use a
synchronized media playerwigoped by Sun Microsystems Labo-
ratories that &s originally tuned to run well with the UNIX SVR4
schedulerlt takes only the addition of a couple of system calls to
allow the application to tak adwantage of SMAR's features. \&
will describe hav this is done to ge readers a better understanding
of the SMAR application inteidice. The firstx@eriment compares
SMART with two other eisting scheduling algorithms: UNIX
SVRA4 scheduling, which se¥s as the most common basis ofky

line by which it should be completed, can request information on
the aailability of processing time for meeting a deadline, and can
request a naotification from the scheduler if it is not possible for the
specified deadline to be met. Furthermore, applications can ha
blocks of code with time constraints and blocks of code that do not,
thereby allaving application deelopers to freely mix real-time and
corventional computations.

SMART also preides a simple upcall from the scheduler that
informs the application that its deadline cannot be met. This upcall
mechanism is called a notification. It frees applications from the
burden of second guessing the system to determine if their time
constraints can be met, and altoapplications to choose theivio

Real-Time Applications

Conventional Applications

Interactive Batch

Deadlines Yes

No No

Service time: noalue if the
entire task is nobecuted

Quantum of Execution

Arbitrary choice Arbitrary choice

Resource Requirement A slack is usually present

=

Relinquishes machine whilg
waiting for human responsg

Can consume all processo
cycles until it completes

D
D

Quality of Service Metric|| Number of deadlines met

Response time Program completion time

Table 1: Categories of applications

policies for deciding what to do when a deadline is missed. F

* Priority. The system should notghade the performance of a

example, upon notification, the application may choose to discard
the current computation, perform only a portion of the computation,
or change the time constraints of the computation. This feedback

high priority application in the presence of alpriority ap-
plication.
Proportional sharing amongeal-time and corentional ap-

from the system enables adaptreal-time applications to gexde
gracefully

Time constraints and notifications are intended to be used by

application writers to support theirvdgopment of real-time appli-
cations; the end user of such applications need nat lamgthing
about time constraints. As araenple, we describe an audio/video
application that ws programmed using time constraints in Section
6.1.

As users may he different preferences for fhoprocessing
time should be allocated among a set of applications, SIM#B-

vides two parameters to predictably control processor allocation.
These parameters can be used to bias the allocation of resources to
provide the best performance for those applications which are cur-

rently more important to the us@ihe user can specify that applica-
tions hae different priorities, meaning that the application with the
higher priority is &vored wheneer there is contention for
resources. Among applications at the same prjattity user can
specify the share of each application, resulting in each applicatio
receving an allocation of resources in proportion to its respecti

share whener there is contention for resources. The notions of

priority and share apply uniformly to both real-time andveon
tional applications. This el of predictable control is unkkcur-
rent practice, as typified by UNIX time-sharing, in which all that a
user is gren is a “nice” knob [39] whose setting is poorly corre-
lated to the schedulerexternally obserable beheaior [29].

Our epectation is that most users will run the applications in
the debult priority level with equal shares. This is the system

default and requires no user parameters. The user may wish to
adjust the proportion of shares between the applications occasion-

ally. A simple graphical intesce can be pwided to mak the
adjustment as simple and intuéias adjusting theolume of a tele-
vision or the balance of a stereo output. The user nay to@ use

the priority to handle specific circumstances. Suppose we wish to

run the PointCast application [34] in the background only if the
system is not tsy; this can be achied simply by running Point-
Cast with a lav priority.

3 The SMART scheduler

In the follaving, we first describe the principles of operations
used in the design of the schedulde then gie an @erview of the
rationale behind the design, folled by an wervien of the algo-
rithm and then the details.

3.1 Principles of operations

It is the schedules’ objectve to delver the behaor expected by
the user in a manner that maximizes therall value of the system
to its users. \& hare reduced this objew# to the folleving six
principles of operations:

plications in the same priority clasBroportional sharing ap-
plies only if the scheduler cannot satisfy all the requests in the
system. The system will fully satisfy the requests of all appli-
cations requesting less than their proportional share. The re-
sources left eer after satisfying these requests are digteith
proportionally among tasks that can use theess. While it

is relatively easy to control thexecution rate of corentional
applications, the »ecution rate of a real-time application is
controlled by seleaotely shedding computations in agea a

rate as possible.

Graceful tlansitions between fluctuations in loddhe system

load \aries dynamicallynev applications come and go, and
the resource demand of each application may also fluctuate.
The system must be able to adapt to the changes gracefully
Satisfying eal-time constints and fast intexctive esponse
time in underloadlf real-time and interaate tasks request
less than their proportional share, their time constraints
should be honored when possible, and the inteeact-
sponse time should be short.

Trading of instantaneous fairness for betteai-time and in-
teractive esponse timéVhile it is necessary that the alloca-
tion is fair on aerage, insisting on beingif instantaneously
at all times wuld cause manmore deadlines to be missed
and deler poor response time to short running taskes vill
tolerate some instantaneous ainfess so long as thetent
of the unhirness is bounded. This is the same vatibn be-
hind the design of multi-lel feedback schedulers [23] to im-
prove the response time of interaetitasks.

Notification of esouce availability SMART allows applica-
tions to specify if and when thewish to be notified if it is
unlikely that their computations will be able to complete be-
fore their giren deadlines.

n

3.2 Rationale and overview

As summarized in dble 1, real-time and ceentional applica-
tions hae \ery diverse characteristics. It is thisveisity that mag&s
devising an intgrated scheduling algorithm fidult. A real-time
scheduler uses real-time constraints to determine xkeuton
order hut corventional tasks do not @ real-time constraints.
Adding periodic deadlines to oceentional tasks is a tempting
design choice, Ut it introduces artificial constraints that reduce the
effectiveness of the system. On the other hand, settional task
scheduler has no notion of real-time constraints; the notion of time-
slicing the applications to optimize system throughput does not
sene real-time applications well.

The crux of the solution is not to confusgencywith impor-
tance An ugent task is one which has an immediate real-time con-
straint. An important task is one with a high prigridy one that has

been the least serviced proportionally among applications with theare also considered in the choice of the application to run. This

same priority An ugent task may not be the one weeute if it modification enables SMARto handle applications with aperiodic
requests more resources than &s share. Corersely an impor- constraints andverloaded conditions.
tant task need not be run immediatlyr example, a real-time task Our algorithm aganizes all the tasks into queues, one for each

that has a higher priorityuba later deadline may be able to tolerate priority. The tasks in each queue are ordered in increasing BVFT
the execution of a laver priority task with an earlier deadline. Our values. Each task hasvatual time which adances at a rate pro-
algorithm separates the processor scheduling decisions into tw portional to the amount of processing time it consumédeti by
steps; the first identifies all the candidates that are consideredts share. Suppose the current task bekegwed has sha®and
important enough toxecute, and the second chooses the task to was initiated at time. Letv(t) denote the tas&'virtual time at time

execute based ongeng considerations. 1. Then the virtual time(t) of the task at current tintds

While ugengy is specific to real-time applications, importance t—1
is common to all the applications evtheasure the importance of an v(t) = V(1) + < - 1
application by asalue-tuple which is a tuple with tee components:))))
priority and thebiased virtual finishing timéBVFT). Priority is a Correspondingly each queue has queue virtual timewhich

static quantity either supplied by the user or assigned tiaeiltlef —adwances only if ay of its member tasks isxecuting. The rate of
value; BVFT is a dynamic quantity the system uses to measure the@d\ance is proportional to the amount of processing time spent on
degree to which each task has been allotted its proportional share ofhe task diided by total number of shares of all tasks on the queue.
resources. The formal definition of the BVFT isegi in Section ~ T0 be more precise, suppose the current task beiguted has
3.3. We say that tash has a higheralue-tuple than task if A has priority P and vas initiated at time. Let Vp(T) denote the queue
a higher static priority or if botA andB have the same priority and Virtual time of the queue with priority at timet. Then the queue

A has an earlier BVET virtual timeVp(t) of the queue with priorit? at current time is
The SMART scheduling algorithm used to determine thgt ne t—1

task to run is as folls: Vp(t) = Vp(1) + S)
1. If the task with the highestlue-tuple is a camntional task afn, a

(a task without a deadline), schedule that task.

2. Otherwise, create a candidate set consisting of all real-time
tasks with higheralue-tuple than that of thieghest alue-tu-
ple cowentional task. (If no camntional tasks are present,
all the real-time tasks are placed in the candidate set.)

3. Apply the best-dbrt real-time scheduling algorithm [27]

whereS, represents the share of applicatioandAp is the set of
applications with priorityP.

Previous work in the domain of paeit switching preides a the-
oretical basis for using the flifence between the virtual time of a
task and the queue virtual time as a measure of whether the respec-
X ; L2 tive task has consumed its proportional allocation of resources [7,

on the candidate set, using thalue-tuple as the priority 331 f 4 tasks virtual time is equal to the queue virtual time, it is
in the original algorithm. By using thewvgin deadlines and considered to hee receied its proportional allocation of resources.
service-time estimates, find the task with the earliest dead- A earlier virtual time indicates that the task has less than its pro-
line whose gecution does not causeyatasks with higher o ional share, and, similaslg later virtual time indicates that it
value-tuples to miss their deadlines. This is agfdeby has more than its proportional share. Since the queue virtual time
considering each candidate in_tumn, starting with the agances at the same rate for all tasks on the queue, theerelati
onewith the highest alue-tuple. The algorithm attempts agnitudes of the virtual times pide a relatie measure of the
to schedule the candidate into arking schedule which is geyree to which each task has reeel its proportional share of
initially empty. The candidate is inserted in deadline order ogources.
in this schedule proded its &ecution does not causeyan The virtual finishing time refers to the virtual time of the appli-
of the tasks in the schedule to miss its deadline. The cation had the application beenagi the currently requested quan-
scheduler simply picks the task with the earliest deadline (ym The quantum for a coentional task is the unit of time the
in the working schedule scheduler gies to the task to run before being rescheduled. The
4.1f a task cannot complete its computation before its deadline, quantum for a real-time task is the application-supplied estimate of
send a notification to inform the respeetapplication that its its service time. A useful property of the virtual finishing time,

deadline cannot be met. which is not shared by the virtual time, is that it does not change as
The following sections praide a more detailed description of the a task gecutes and uses up its time quantunt, dnly changes
BVFT, and the best-&frt real-time scheduling technique. when the task is rescheduled with arigne quantum.
In the following, we step through all thevents that lead to the
3.3 Biased virtual finishing time adjustment of the biased virtual finishing time of a task. Let the task

in question hee priority P and share. Let 3(t) denote the BVFT
The notion of avirtual finishing time (VFT,)which measures the of the task at timé&
degree to which the task has been allotted its proportional share of Task ceation time When a task is created at timg it acquires
resources, has been yimusly used in describingair queueing as its virtual time the queue virtual time of the its corresponding
algorithms [2, 7, 33, 38, 40]. &Vaugment this basic notion in the queue. Suppose the task has time quaf@uthen its BVFT is
following ways. First, our use of virtual finishing times incorporates

tasks with diferent priorities. Second, we add to the virtual finish- B(tg) = Vp(1g) + 98- 3)

ing time a bias, which is a boundedset used to measure the abil-

ity of corventional tasks to tolerate longer and maagied service Completing a QuantunOnce a task is created, its BVFT is
delays. The biased virtual finishing time alfous to preide better ~ updated as folles. When a task finisheseuting for its time
interactie and real-time response without compromisimignéss. ~ quantum, it is assigned ameime guantunQ. As a cowmentional
Finally and most importantlywveighted &ir queueing xecutes the task accumulatescecution time, a bias is added to its BVFT when
task with the earliest virtual finishing time to pide proportional it gets a n& quantum. That is, léd representhe increased bias and

sharing. SMAR only uses the biased virtual finishing time in the T be the time a task’BVFT was last changed. Then, the task’
selection of the candidates for scheduling, and real-time constraint$VFT is

Q.b To determine if a wrking schedule is feasible, I8t be the pro-
BM® =BM+35*g) cessing time required by tajsto meet its deadlinand letE; be the
execution time task has already spent runningMard meeting its
deadline. LeF; be the fraction of the processor required by a peri-
odic real-time taskl;:j is simply the ratio of a task'service time to

Gs period if it is a periodic real-time task, and zero otherwise. Let
D; be the deadline of the task. Then, the estimated resource require-
ment of task at a timet such thatt > Dj is:

The bias is used to defer long running batch computations dur-
ing transient loads to alloreal-time and interast® tasks to obtain
better immediate response time. The bias is increased in a mann
similar to the vay priorities and time quanta are adjusted in UNIX
SVR4 to implement time-sharing [39]. The total bias added to an
applications BVFT is bounded. Thus, the bias does not change
either the rate at which the BVFT is aticed or theerall propor- Ri(t) = Q—E;+F;x(t-D)),t=D;. (§)
tional allocation of resources. It onlyfedts the instantaneous pro- A working schedulaW is then feasible if for each tashn the
portional allocation. User interaction causes the bias to be reset tQchedule with deadlinb:. the follaving inequality holds:
its initial value. Real-time tasks v& zero bias. " i

The idea of a dynamically adjusted bias basedkeouwion time D;zt+ w% R]-(Di), Oiow.)
is somevhat analogous to the idea of a decaying priority based on jo ;<D
execution time which is used in multilel-feedback schedulers.
However, while multilevel-feedback décts the actual \v@rage
amount of resources allocated to each task, bias ofdgtsaifthe
response time of a task and does nétcafits averall ability to
obtain its proportional share of resources. By combining virtual fin-
ishing times with bias, the BVFT can be used toviol® both pro-
portional sharing and better system respamgss in a systematic
fashion.

Bloking for I/O or eents. A blocked task should not be
allowed to accumulate credit to airf share indefinitely while it is
sleeping; hwever, it is fair and desirable to g the task a limited
amount of credit for not using the processgries and to impnee
the responseness of these task§herefore, SMAR allows the
task to remain on its gen priority queue for a limited duration
which is equal to the lesser of the deadline of the task (if one
exists), or a system dadilt. At the end of this duration, a sleeping
task must leze the queue, and SMARrecords the diérence
between the task’and the queug'virtual time. This dference is

On each task insertion into theosking schedule, the resulting
working schedule that includes thenfginserted task is tested for
feasibility. If the resulting warking schedule is feasible and the
newly inserted task is a periodic real-time task, its estimate of
future processing time requirements is accounted for in subsequent
feasibility tests. At the same timewler value-tuple tasks are only
inserted into the wrking schedule if thedo not cause gnof the
current and estimated future resource requests of higher-tuple
tasks to miss their deadlines. The itematselection process is
repeated until SMAR runs out of tasks or until it determines that
no further tasks can be inserted into the schedule fea®bbe the
iterative selection process has been terminated, SMien ee-
cutes the earliest-deadline runnable task in the schedule.

If there are no runnable ogentional tasks and there are no run-
nable real-time tasks that can complete before their deadlines, the
scheduler runs the highestlwe-tuple runnable real-time taskea
though it cannot complete before its deadline. The rationale for this
is that it is better to use the processales than alle the proces-

%or to be idle. The algorithm is thereforerkconserving, meaning
that the resources arevee left idle if there is a runnable taskea
if it cannot satisfy its deadline.

nable. LetE be the ®ecution time the task has already reedi
toward completing its time quantu@, B be its current bias, and
v(t) denote the tas&'virtual time. Then, the ddrenceA is

A = v(t)-Vp(1), (5) 3.5 Complexity
where The cost of scheduling with SMARconsists of the cost of
t) = B(t Q-E B 6 managing the alue-tuple list and the cost of managing ttarking
v(t) = B(1) - s S ©®) schedule. The cost of managing tredue-tuple list in SMAR is

L e . O(N), whereN is the number of ast tasks. This assumes a linear
Upon rejoining the queue, its bias is reset to zero and the BVFT IS . sertion alue-tuple list. The comptdy can be reduced to

B(t) = Vp(t) +A+ Q. @) O(logN) using a tree data structureor/smallN, a simple linear
S list is likely to be most &tient in practice. The cost of managing
Reassigned user pametes. If a task is gien a ne priority, it the \alue-tuple list is the same as WFQ. , ,
is reassigned to the queue corresponding to itspmrity, and its The vorst case compiéty of managing the wrking schedule is
BVFT is simply calculated as in Equation (3). If the task vemia O(Ng) , whereNg is the number of aste real-time tasks of higher
nev share, the BVFT is calculated byviray the task leze the value than the highestalue comentional task. This warst case

queue with the old parameters used in Equation (6) to caldylate ©0ccurs if each real-time task needs to be selected and feasibility
and then join the queue a@g with the nes parameters used in tested aginst all other tasks when reliling the vorking schedule.

Equation (7) to calculate its BVET It is unlikely for the vorst case to occur in practice foryareason-
ably lage Ng. Real-time tasks typically i short deadlines so that
3.4 Best-efbrtreal-time scheduling if there are a lge number of real-time tasks, the scheduler will

determine that there is no more slack in the schedule before all of

SMART iteratively selects tasks from the candidate set in the tasks need to be inttlually tested for insertion feasibilitifhe
decreasing alue-tuple order and inserts them into an initially Presence of caentional tasks in the evkstation ewironment also

empty working schedule in increasing deadline ordére vorking preventsNg from graving lage. For lageN, the cost of scheduling
schedule defines arxezution order for servicing the real-time With SMART in practice is epected to be similar to WFQ.
resource requests. It is said tofeasibleif the set of task resource A more complicated algorithm can be used to reduce the com-

requirements in the evking schedule, when serviced in the order Plexity of managing the wrking schedule. In this case, awne
defined by the wrking schedule, can be completed before their Working schedule can be incrementallyilb from the aisting
respectie deadlines. It should be noted that the resource require-working schedule as netasks arwe. By using information con-
ment of a periodic real-time task includes an estimate of the pro-tained in the xisting working schedule, the compigy of building
cessing time required for its future resource requests. the nev working schedule can be reduced@¢Ng) . When only

(a) Deadlines of real-time applications
| | | | | | | |

Ao
(b) Schedule

Bo

BVFT

—aC
Sww Bias of C

40

80 120 160 200 240

: | |
\ N IR

280

320 360 400 440 480

Figure 1: Example illustrating the behavior of SMART

deletions are made to theorking schedule, thexisting working
schedule can simply be used, reducing the co€)(f .

3.6 Example

We nav present a simplexample to illustrate he the SMART
algorithm works. Consider a @rkload irvolving two real-time
applications, A andB, and a cowventional applicatiorC. Suppose

all the applications belong to the same priority class, and their pro-

portional shares are in the ratio of 1:1:2, respelsti Both real-
time applications request 40 ms of computation tireye80 ms,
with their deadlines being completely out of phase, asvshio

4 Analysis of the behaior of the algorithm

In the follaving, we describe e the scheduling algorithm fol-
lows the principles of operations as laid out in Section 3.1.

4.1 Priority

Our principle of operation garding priority is that the perfor-
mance of high priority tasks should not beetied by the presence
of low priority tasks. As the performance of a wemntional task is
determined by its completion time, a high priority wemtional task
should be run before wrlower priority task. Step 1 of the algo-

Figure 1(a). The applications request to be notified if the deadlinesrithm guarantees this behar because a high priority tasknalys
cannot be met; upon natification, the application drops the currenthas a higheralue-tuple than gnlower priority task.

computation and proceeds to the computation for tkedeadline.
The scheduling quantum of the wentional applicatiorC is also

On the other hand, the performance metric of a real-time appli-
cation is the number of deadlines satisfied, nat darly the gecu-

40 ms and we assume that it has accumulated a bias of 100 ms &bn takes place. The bestfeft scheduling algorithm in Step 3 will

this point. Figure 1(b) and (c) shahe final schedule created by
SMART for this scenario, and the BVFTalues of the dftrent
applications at diérent time instants.

The initial BVFTs of applicationé andB are the same; sin€2
has twice as manshares a# andB, the initial BVFT ofC is half

run a laver priority task with an earlier deadline first, only if it can
determine that doing so does not cause the high priority task to miss
its deadline. In this ay, the system delers a bettererall value to

the userNote that the scheduler uses the timing information sup-
plied by the applications to determine if a higher priority deadline is

of the sum of the bias and the quantum length. Because of the biagp be satisfied. It is possible for a higher priority deadline to be

applicationC has a later BVFT and is therefore not run immedi-
ately The candidate set considered fae@ition consists of both
applicationsA andB; A is selected to run because it has an earlier
deadline. (In this case, the deadline is used as a tiechreatween
real-time tasks with the same BVHill general, a task with an early
deadline may get to rurver a task with an earlier BVFTuba later
deadline.) When a task finishes its quantum, its BVFT is incre-
mented. The increment f@ is half of that forA andB because the
increment is the result ofwiling the time quantum by its share.
Figure 1(c) shas hav the tasks are scheduled such that their
BVFT are lept close together

This example illustrates seral important characteristics of
SMART. First, SMAR' implements proportional sharing properly
In the steady stat&; is given twice as much resources/fAasr B,
which reflects the ratio of sharesven to the applications. Second,
the bias alls better response in temporamedoad, lot it does
not reduce the proportional shargayi to the biased task. Because
of C's bias,A andB get to run immediately at thediening; eren-
tually their BVFTs catch up with the bias, a@dis given its fir
share. Third, the scheduler is able to meetymaal-time con-
straints, while skipping tardy computationsr lExample, at time 0,
SMART schedules applicatioh beforeB so as to satisfy both
deadlines. On the other hand, at time 120 ms into xBeugon,
realizing that it cannot meet the deadlinejt executes application
B instead and notifie& of the missed deadline.

missed if its corresponding time estimate is inaccurate.

4.2 Proportional sharing

Having described he time is apportioned acrossfeifent prior-
ity classes, we wo describe hev time allocated to each priority
class is apportioned between applications in the class. If the system
is populated with only caentional tasks, we simply \dde the
cycles in proportion to the shares across thierdiit applications.
As noted in &ble 1, interactie and real-time applications may not
use up all the resources thatytlzee entitled to. An unused ygcles
are proportionally distriited among those applications that can
consume theycles.

4.2.1 Conventional tasks

Let us first consider corntional tasks whose virtual finishing
time has not been biasedeVdbsere that gen though real-time
tasks may not>ecute in the order dictated by WFQ, the scheduler
will run a real-task only if it has an earlFT than ag of the con-
ventional tasks. Thus, by considering all the real-time tasks with an
earlier VFT as one single application with a correspondingly higher
share, we see the SMARreatment of the ceentional tasks is
identical to that of a WFQ algorithm. From the analysis of the
WFQ algorithm, it is clear that ceentional tasks are \gn their
fair shares.

A biasis addedo a tasks VFT only after it has accumulated a
significant computation time. As a éid constant, the bias does not

change the relate proportion between the allocation of resources. control to allav real-time tasks to resena fixed percentage of the

It only senes to allev a greater ariance in instantaneouairiness, resource in accordance with their resource requirement.l&fa
thus allaving a better interaste and real-time response in transient over processing time is allocated to eentional tasks using a stan-
overloads. dard timesharing or round-robin scheduler

. o Several diferences in these resation approaches are apparent.
4.2.2 Real-time applications While the approaches in [5, 25] takdantage of earliest-deadline

scheduling to pndde optimal real-time performance in underload,
the rate monotonic utilization bound used in [28] and the time inter-
val assignment used in Rialto [22] are not optimal, resulting in
lower performance than earliest-deadline approaches. In contrast
with SMART, these approaches are more resggctespecially in

We say that a systemusderloadedf there are stiicient g/cles
to give a hir share to the cemntional tasks in the system while sat-
isfying all the real-time constraints. When a system is underloaded
the cowentional tasks will be serviced often enough with the left-
over processorycles so that thewill have later BVFTs than real-

; A . e ; the level of control preided for conentional tasks. Thedo not
time applications. The ceantional applications will therefore onl . h A
run wr?gn there are no real-time ggplications in the system.yThepro‘/Ide a common mechanism for sharing resources across real-

real-time tasks are thus scheduled with a strict bést-athedul- time and coventional tasks. In particulawith corventional tasks

ing algorithm. It has been pren that in underload, the besteef being gven leftorer processing time, their potential sttion is a

scheduling algorithm dgenerates to an earliest-deadline scheduling proglem.bThls pro?lem |§><acerbatcelq n Rlalto.[le]. In Wh'Ch’en.
algorithm [26], which has been sho to satisfy all in the absence of resations, applications with time constraints

schedulingconstraints, periodic or aperiodic, optimally [8]. gl;rr;ﬁga;ir:)rfge[lzrlfource code arevgn priority over corventional

In an underloaded system, the scheduler satisfies all the real- ’ . . I -

time applications’ requests. CPU time igagi out according to the Note that the use of resations relies on infldble admission
control policies to woid overload. This is usually done on a first-

?ri)nrgut?s ;ﬁgéisges(js’i nggToThaey?aﬁic\g%ﬁﬂisegt npergporrélo(;lr_ come-first-serg basis, resulting in later afing applications being
tional shares are usegd in the manglpement of realgtime g FI)i(:ationgeniecj resourceseen if they are more important.oibe able toxe-
9 pp ute later arding applications, an as yet undetermined higgel

only if the system is\ersubscribed. resource planning polic or worse yet, the usemust rengotiate

A real-time application whose requegteeds itsdir share for) -) :
the current loading condition willventually accumulate a BVFT g;isresource reseations via what is at best a trial-and-error pro

later than other applications’ BVFTs. &v if it has the earliest Unlike reseration mechanisms, bestat real-time scheduling

o b o oo o7 Ve (27 proces optiml perormance i underkad whie ensung
: g R L . tasks of higher priority can meet their deadlinesvierload. Hov-
cause a higheralued real-time application to miss its deadline. If ever, it provides no vay of scheduling corentional tasks and does

the application accepts notification, the system will inform the > - ;
application when it determines that the constraint will not be met. gﬁ;rsiggport common resource sharing policies such as proportional

This intertice allavs applications to implement theiwo degrada- By introducing admission control, SMARcan also pradde

tion policies. Ier instance, a video application can decide whether resource reseasions with optimal real-time performance. In addi-

O e e, oISt 10, SMART ubsues besot eabime schedulng o pe
quaity 9 yp yoptimal performance in meeting time constraints in underload e

;isdh'i%?ér;r;etﬁggl'g?g%n I??#fg trllii attlirggngo%znﬁg?g]gcicionrgtli?ﬁ:g-in the absence of resations. This is especially important for com-
Y : pp p mon applications such as MPEG video whose dynamic require-

tion, havever, eventually all the other applicatiomsll catch up : : . -
with their BVFT, and the scheduler will aibbthe nav late applica- ments match poorly with static resation abstractions [1, 16]

tion to run.

Just as the use of BVFTg@lates thedir allocation of resources
for corventional tasks, it scales wo the real-time tasks propor-
tionally. In addition, the bias introduced in the algorithm, as well as to
the use of a bestfeft scheduler among real-time tasks withfisuf
ciently high alues, allvs more real-time constraints to be met.

5.2 Fair queueing

Fair queueing pnades a mechanism which allocates resources
tasks in proportion to their shares. Hsifirst proposed for net-
work paclet scheduling in [7], with a morextensie analysis pro-
vided in [33], and later applied to processor scheduling in [40] as
stride scheduling. Recentaiants [2, 38] preide more accurate

5 Related work proportional sharing at thexgense of additional schedulinges-

. .) head. The share used withirfqueueing can be assigned in accor-
Recognizing the need to pide better scheduling to support the gance with user desired allocations [40], or it can be assigned based

needs of modern applications such as multimedia, a number ofy, the tasle resource requirement to pite resource reseations

resource management mechanismgehaeen proposed. These 33 3g]. When used to prige reserations, an admission control
approaches can be loosely classified as real-time schedaling, f ojicy is also used.

queueing, and hierarchical scheduling. When shares are assigned based on user desired allocaiions, f
. . gueueing praeides more accurate proportional sharing forveon
5.1 Real-time scheduling tional tasks than pvéous fair-share schedulers [9, 19]. Wever, it

performs poorly for real-time tasks because it does not account for
their time constraints. In underload, time constraints are unneces-
sarily missed. In erload, all tasks are proportionally late, poten-
tially missing all time constraints.
When shares are assigned based on task resource requirements
) ;) to provide reserations, &ir queueing can befettive in underload
nor are thg de5|gneq to support ceentional appllcatlor_ws. . at meeting real-time requirements that are strictly periodic in their
Resource reseations are commonly combined with real-time o, tation and deadline. #ever, its performance is not optimal

scheduling in an attempt to run real-time tasks withventional in underload and sigrs especially in the case of aperiodic real-
tasks [5, 22, 25, 28]. These approaches are used with admission P y P

Real-time schedulers such as rate-monotonic scheduling [24
26] and earliest-deadline scheduling [8, 26] are designed te mak
better use of hardave resources in meeting real-time requirements.
In particular earliest-deadline scheduling is optimal in underload.
However, they do not perform well when the system iedoaded,

time requirements.dravoid making all tasks proportionally late in
overload, admission control is used.

Unlike real-time reseation schedulersafr queueing can inte-
grate resemtion support for real-time tasks with proportional shar-
ing for comventional tasks [38]. Heever, shares for real-time

mix of real-time, interacte and batch applicationgezuting in a
workstation ewironment. The first x@eriment compares SMAR
with two existing schedulers: the UNIX SVR4 scheduleoth real-
time (SVR4-R) and time-sharing (SVR4-TS) policies, and a WFQ
processor scheduléFhe secondx@eriment demonstrates the abil-

applications must then be assigned based on their resource requiréty of SMART to provide the user with predictable resource alloca-

ments; thg cannot be assigned based on user desired allocations.

By providing time constraints and shares, SMARbt only sub-
sumes dir queueing, it it can also more fefctively meet real-time
requirements, with or without resations. Unlile fair queueing, it
can preide optimal real-time performance while aliag propor-

tional sharing based on user desired allocations across both real-

time and cowentional applications. Furthermore, SMARRIso sup-

ports simultaneous prioritized and proportional resource allocation.

5.3 Hierarchical scheduling

Because creating a single scheduler to service both real-time

and comrentional resource requirements has/prodificult, a num-
ber of lybrid schemes [3, 6, 15, 16, 39eabeen proposed. These
approaches attempt toad the problem by héng statically sepa-
rate scheduling policies for real-time and\emtional applications,
respectiely. The policies are combined using either priorities [6,
15, 39] or proportional sharing [3, 16, 18] as the bass gshedul-
ing mechanism.

With priorities, all tasks scheduled by the real-time scheduling
policy are assigned higher priority than tasks scheduled by the con-

ventional scheduling poljc This causes all real-time tasksyard-
less of whether or not theare important, to be run ahead ofyan
conventional task. The lack of control results iperimentally
demonstrated pathological bef@s in which runeay real-time
computations prent the user fromven being able to gain con-
trol of the system [29].

With proportional sharing, a real-time scheduling pobnd a
corventional scheduling poljcare each gen a proportional share

of the machine to manage by the underlying proportional share
mechanism, which then timeslices between them. Real-time appli-

cations will not tak over the machine, ut they also cannot meet
their time constraints fefctively as a result of the underlying pro-
portional share mechanism taking the resouvezydrom the real-
time scheduler at an inopportune andxpeeted time in the name
of fairness [17].

The problem with prgous mechanisms thatVyebeen used for
combining these scheduling policies is thatytde not eplicitly
account for real-time requirements. These schedulers relyfen dif
ent policies for diierent classes of computationsit bhey encoun-
ter the same ditulty as other approaches in being unable to
propagte these decisions to thevkst-level of resource manage-
ment where the actual scheduling of procesgdes tales place.

SMART behaes like a real-time scheduler when scheduling
only real-time requests and beba like a comentional scheduler
when scheduling only ceantional requests. ka@ver, it combines
these tw dimensions in a dynamically iggated vay that fully
accounts for real-time requirements. SMARnNsures that more
important tasks obtain their resource requirements, whethebéhe
real-time or comentional. In addition to alleing a wide range of
behaior not possible with static schemes, SMARrovides more
efficient utilization of resources, is better able to adaptarying
workloads, and prodes dynamic feedback to support adapti
real-time applications that is not found in\po&is approaches.

6 Experimental results

We hae implemented SMAR in Solaris 2.5.1, the current
release of Sun MicrosysteradJNIX operating system.cldemon-
strate its déctiveness, we describe avsets of gperiments with a

tion controls, adapt to dynamic changes in therkiead, and
deliver expected behaor when the system is noverloaded.

Three applications were used to represent batch, interactd
real-time computations:

» Dhrystone(batch) — This is the Dhrystone benchmarkertv
sion 1.1), a synthetic benchmark that measures CPgeinte
performance.

» Typing (interactve) — This application emulates a user typ-
ing to a tet editor by receiing a series of characters from a
serial input line and using the X windasener [35] to dis-
play them to the frameuffer. To enable a realistic and re-
peatable sequence of typedeystrokes for interactie
applications, a hardave leyboard simulator ws constructed
and attached via a serial line to the testbeckstation. This
device is capable of recording a sequenceagbkard inputs,
and then replaying the sequence with the same timing charac-
teristics.

« Integrated Media Strams Playefreal-time) — The Intgrat-
ed Media Streams (IMS) Player from Sun Microsystems Lab-
oratories isa timestamp-based system capable of playing
synchronized audio and video streams. It adapts to its system
environment by adjusting the quality of playback based on
the system loadlhe application as deeloped and tuned for
the UNIX SVR4 time-sharing scheduler in the Solaris
operatingsystem. Br the aperiment with the SMAR
schedulerwe hae inserted additional system calls to the ap-
plication to tak adwantage of the features prded by
SMART. The details of the modifications are presented in
Section 6.1. W use this application in twdifferent modes:

* News (real-time) — This application displays synchro-
nized audio and video streams from local stor&geh
media stream flows under the direction of an indepen-
dent thread of control. The audio and video threads
communicate through a shared memory region and use
timestamps to synchronize the display of the media
streams. The video input stream contains frames at
320x240 pixel resolution in JPEG compressed format at
roughly 15 frames/second. The audio input stream con-
tains standar@®-bit p-law monaural samples. The cap-
tured data is from a satellitevag netvork.

 Entertain(real-time) — This application processes vid-
eo from local storage. The video input stream contains
frames at 320x240 pék resolution in JPEG com-
pressed format at roughly 15 frames/second. The appli-
cation scales and displays the video at 640x486I pix
resolution. The captured data contains a mix okitele
s!oln programming, including sitcom clips and commer-
cials.

The eperiments were performed on a standard, production
SFARCstatiorhi] 10 workstation with a single 150 MHzyper-
SFARCO processqr64 MB of primary memoryand 3 GB of local
disk space. The testbed system included a standard 8-bit pseudo-
color frame bffer controller (i.e., GX). The displayas managed
using the X Vihdov System. The Solaris 2.5.1 operating system
was used as the basis for omperimental work.

The standard UNIX SVR4 scheduling franmek upon which
the Solaris operating system is based epgpl periodic 10 ms
clock tick. It is at this granularity that schedulingeets can occur
which can be quite limiting in supporting real-time computations
that hare time constraints of the same order of magnitudellow
a much finer resolution for schedulingeats, we added a high res-

News video Entertain
50 T T T T T 50 T T T T T
Actual

fg 40 — fg 40 —
° Actual °
E 30 E 30
9] 9]
=20 g =20 g
£ £ |
= = Estimate error .1
S 10} - S w0} | P 1 P
5 Estimate error | 1 ‘ \ b k= : b | M - | J Pl
o) |) o Ay, [o \ \',\m‘)] bt d AR
> el o | il ; ? 7} oo i "W'WMW W w1 ikt r%ﬂ W“ W
g mW‘*WWWWMWWWNMW”WWMWW””‘M 3 o i’wl i fui ’J i WW f if ”WWU;.M i j

-10 1 1 1 1 1 -10 1 1 1 1 1

0 50 100 150 200 250 300 0 50 100 150 200 250 300

Elapsed wall clock time (s) Elapsed wall clock time (s)
Figure 2: Actual vs. estimated execution time per JPEG image

olution timeout mechanism to therkel and reduced the time scale posts into the shared memorgi@ to determine when to display
at which timer based interrupts can occline &act resolution its frames.
allowed is hardwre dependent. On the testbeatkgtation used for If the video player is ready to display its frame eatien it
these gperiments, the resolution is 1 ms. The high resolution tim- delays until the appropriate timejthif it is late, it discards its cur-
ing functionality was used for all of the schedulers to ensuragira f rent frame on the assumption that continued processing will cause
comparison. further delays later in the stream. The application defines early and
All measurements were performed using a minimally obteusi late as more than 20 ms early or late with respect to the awdio. F
tracing fcility that logs eents at significant points in application, UNIX SVR4, the video player must determine entirely on vt® o
window system, and operating system code. This is done via awhether or not each video frame can be displayed on time. This is
light-weight mechanism that writes timestampe@ng identifiers done by measuring the amount dadlixclock time that elapses dur-
into a memory log. The timestamps are gisIresolution. W mea- ing the processing of each video frame. Amarnential serage
sured the cost of the mechanism on the testlwekstation to be 2- [13] of the elapsed &ll clock time of preiously displayed frames
4 ps per gent. We created a suite of tools to post-process theseis then used as an estimate fowhong it will take to process the
event logs and obtain accurate representations of what happens iourrent frame. If the estimate indicates that the frame will complete
the actual system. too early (more than 20 ms early), the video player sleeps an
All measurements were performed on a fully functional system amount of time necessary to delay processing tw dlie frame to
to represent a realisticonkstation emronment. By a fully func- be completed at the right time. If the estimate indicates that the
tional system, we mean that akperiments were performed with frame will be completed too late (more than 20 ms late), the frame
all system functions running, the windsystem running, and the is discarded.
system connected to the netk. At the same time, anfeft was The application adapted to run on SMARses the same mech-
made to eliminate ariations in the test gmonment to ma& the anism as the original to delay the frames thatild/ otherwise be
experiments repeatable.oTthis end, the testbed systemasw completed too earlyWe replace the applicatian'discard mecha-
restarted prior to eachxgerimental run. nism with simply a time constraint system call to inform SMAR
of the time constraints for avgin block of application code, along
with a signal handler to process notifications of time constraints
that cannot be met. The time constraint informs SNMAR the
deadline for the »ecution of the block of code that processes the
video frame. The deadline is set to the time the frame is considered
late, which is 20 ms after the ideal display time. It alseiges an
estimate of the amount okecution time for the code calculated in
a similar manner as the original program. In particalareponen-
tial average of the »ecution times of prgously displayed frames
scaled by 10% is used as the estimate. Upon settingviére tjine
constraint, the application requests that SMA#Rovide a notifica-
n;ion to the application rightveay if early estimates predict that the
time constraint cannot be met. When a notification is sent to the
application, the application signal handler simply records dbe f
that the notification has been reeal. If the notification is recesd
cpy the time the application 9ms the computation to process and
display the respeest video frame, the frame is discarded; other-
wise, the application simply alis the frame be displayed late.
Figure 2 indicates that simplegonential aeraging based on
previous frame recution times can be used to yde reasonable
gstimates of framexecution times een for JPEG compressed
video in which frame timesavy from one frame to anothéYote
hat MPEG video wuld require weraging for each type of frame.
ach graph shes the actual »ecution time for each frame, the

6.1 Programming with time constraints

The SMAR application intedice maks it easier to delop a
real-time application. The sofase deeloper can xpress the
scheduling constraints directly to the system anck e system
deliver the &pected behaor. To illustrate this aspect of SMAR
we first describe what it took to widop the IMS Player for UNIX
SVR4, then discuss twowe modified it for SMAH.

6.1.1 Video player

The video player reads a timestamped JPEG video input strea
from local storage, uncompresses it, dithers it to 8-bit pseudqg-color
and renders it directly to the framefter. When the video player is
not used in synchrgrwith an audio playeas in the case &nter-
tain, the player uses the timestamps on the video input stream t
determine when to display each frame and whetheres iame is
early or late. When used in conjunction with the audio plasemn
the case oNews the video player attempts to synchronize its out-
put with that of the audio &iee. In particular sincehumans are
more sensitive to intra-stream audio asynchronies (i.e. audio delay
and drop-outs) than to asynchronies involving video, tkiiead
controlling the audio stream free-runs as the master time referenc
and the video “sk&” thread uses the information the audio player

Name Basis of MeasuremeniNo. of Measurements CPU Time Avg. | CPU Time Std. De. % CPU A/g.
Newsaudio per sgment 4700 1.54 mg 0.79 ms 2.42%
Newsvideo per frame 4481 28.35 mg 2.19ms 42.34%

Entertain per frame 4487 39.16 ms 2.71 ms 58.55%

Typing per character 1314 1.96 ms 0.17 ms 0.86%

Dhrystone per &ecution 1 298.73 5 N/A 99.63%

Table 2: Standalone execution times of applications

Name Quality Metric On Time| Early Late | Dropped| Avg. |Std.De.
Newsaudio Number of audio dropouts 100.009 0.009% 0.009% 0.00% 0 0
Newsvideo [Actual display time minus desired display timé&9.75% 0.09%9 0.13%9 0.02% 1.50 mg 2.54 mg

Entertain |Actual display time minus desired display tim®9.58% 0.229% 0.13%9 0.07% 1.95m3 3.61 ms

Typing Delay from character input to character displa90.00% N/A 0% N/A| 26.40 m$ 4.12 ms

Dhrystone Accumulated CPU time N/A N/A N/A N/A| 298.73 4 N/A

Table 3: Standalone application quality metric perbrmance

average gecution time across all frames, and thefedénce schedulersvhen running only one application. Theseution times
between the estimated and actuetcaition time for each frame. include user time and system time spent on behalf of an application.
The slight positie bias in the diérence is due to the 10% scaling The Dhrystonebatch application can run whesee the processor is

in the estimate ersus the actualxecution time. As shen in the available and can thus fully utilize the procesddre eecution of
figure, there is a wideaviance in the time it tas to handle a other system functions (fsflush, wivdosystem, etc.) tas less
frame. The results also illustrate thefidiflty of using a resource than 1% of the CPU time. The measurements on the real-time
resenation scheme. Using the upper bound on the processing timeapplications are tan erery frame, and those fdlyping are talken

as an estimate may yield aMautilization of resources; using the every characterNone of the real-time and interagtiapplications
average processing time may cause too ymedeadlines to be can tale up the whole machine on ita/m, with bothNews audio
missed. andTyping taking hardly ap time at all. The video foNews takes

up 42% of the CPU, wheredsntertain which displays scaled
video, tales up almost 60% of the processor time.

The audo player reacs tmestampe auio nput srean o S5 Splealon e aly of e et e
local storage and outputs the audio samples to the audicede 9 P Y

; o . . tem response to aviel that is &ster than what a human can readily
-tl;)r/]tee psrgﬁﬁssgg %f g};f ;I'Ll:(;?\év g}gg‘gﬂ@l Stﬁ;n%lﬁgif S%@ir'résklz detect. This means that for simple tasks such as typing, cursor
adwantage of bffering available on the audio #i&e to work ahead tmhggog(’)_igén %USS([ES%E l?;'%ﬁcﬁyﬁimmf:g?rgzmz srr]lgrue{gte?re less
in the audio stream when processgcles are wailable. Up to 1 lateny and determine the percentage of characters processed with
second of wrkahead is allved. For each block of code that pro- lateng less than 50 ms, with latenbetween 50-150 ms, and with
cesses an audlog;aept, the audio player aims to complete t.@ € lateny greater than 150 msoFNews audio, it is desirable not to
Tn.f ntdbefé)rre the audio _vziee crjunsso'\ljl%cl;fsaﬁdlofsamples tohdlsg_lay have ary artifacts in audio output. As such, we measured the num-
e deadline communicated to therefore set to the dis- . ’ L -
: : - ; ber of News audio samples droppedoifNewsvideo andentertai
play time qf thg Iast.audlo sample in thdfbr. The estimate of the it is desirable to minirgize thep(?éfence between the desiredndis-
gﬁﬁgt'&g etlgﬂ(raeloskj?untigr? ?ﬁqf:?ﬁégﬂggﬁ%%&?g g‘iirzge play time and the actual display time, while maximizing the num-
ments. Audio sgments that cannot be processed before their dead-gﬁéhmvar:n:esatsk:ﬁtesr?hg'Srgiyeendtaggzlg}lsth;'{dtllzr?]?erctgﬂls\tlrizgs' As
nes ar simpydispayed e, Noe tnat because oftnkaead 700 1 T G8 S B IR S SRR T
be hiahlv aperiodic 9 9 desired time), displayed earlyisplayed late, and the percentage of
gnly ap ' frames dropped not displayed. Finaligr batch applications such
as Dhrystone it is desirable to maximize the processing time
devoted to the application to ensure as rapid &dvprogress as
possible. As such, we simply measured the CPU Diney/stone
accumulated. @ establish a baseline performancabl@ 3 shas
the performance of each application when @svweecuted on its
own.
While measurements of accumulated CPU time are straightfor-
ward, we note that geral steps were tak to minimize and quan-

6.1.2 Audio player

6.2 Application characteristics and quality metrics

Representing di¢érent classes of applicationyping Dhrys-
tone News and Entertain have ery different characteristics and
measures of qualityor example, we care about the response time
for interactve tasks, the throughput of batch tasks and the number
of deadlines met in real-time tasks. Before discussimgahcombi-
nation of these applicationseeutes on diérent schedulers, this

section describes flowe measure the quality of each of thdedif tify ary error in measuring audio and video performance as well as
ent applications, and fweach vould perform if it were to run on interactve performance.d NewsandEntertain the measurements

its own. reported here are _performed by the_ _respecnipplications the_m-
Table 2 shais the &ecution time of each application on an oth- SEles during eecution. V¢ also quantified the error of these inter-

erwise quiescent system using the UNIX SVR4 schedmiea- nal measurements by using a haadwdeice to ternally measure

sured wer a time period of 300 secondse\Wote that there is no e actual user peroed video display and audio display times

P . ; [36]. External ersus internal measurementdetiéd by less than 10
significant - diference between the performance o fesiént ms. The diference is due to the refresh time of the framfieb

10

CPU allocation 100 News audio News video Entertain Typing

100 100
k5
@ Other 2 [Dropped [Dropped ,% O Unprocessed
o 80T [J News audio % 80 +— M Late $ 80 +— M Late o M Latency > 150ms
% [News video o] O Early % O Early Q [Latency 50-150ms
g B Entertain 8 M OnTime = B OnTime % M Latency < 50ms
5 601 O Typing £ 60 ® 60 I
o M Dhrystone < IS] S
) 2 Z °
= 2 5] 3
S 40 5 40 = 40 S
1= - [} §—
3] 5 e °
o o] c
20 5 20 a 20 @
a o
[
o
0 0 0
EELRE EELRE S ELTE §ELRE EELRE
2 Fg%s 23853 =2 gFEss 2 3gss 2 ggss
a5 a5 ° a5 ° a5 ° a5 7
Scheduler used Scheduler used Scheduler used Scheduler used
Figure 3: Comparison of scheduler application perdfrmance
For Typing we measured the end-to-end character lgtéom the * SVRA4-TS: All the applications are run in time-sharing mode.
arrival of the character to the system in the inputicde driver, (We also eperimented with puttindyping in the interactie
through the processing of the character by the application, until the application class and obtained slightlpnae performance.)
actual display of the character by the X wiwdsystem character « WFQ: All the applications are run with equal share.
display routine. + SMART: All the applications are run with equal share and

equal priority
Because of their computational requirements, ttex@ion of

To provide a characterization of schedulingethead, we mea- these applications results in the system bewegloaded. Indct,
sured the conié switch times for the UNIX SVR4, WFQ, and the News video and theEntertain applications alone will fully
SMART schedulers. Yerage contd switch times for UNIX occupy the machine. Both th&/ping andNews audio applications
SVR4, WFQ, and SMAR are 27ys, 42ps, and 47s, respec- hardly use an CPU time, taking up a total of only 3-4% of the
tively. These measurements were obtained running thesnuk CPU time. It is thus desirable for the scheduler toveelshort
applications described in this papsimilar results were obtained ~lateny on the former application and meet all the deadlines on the
when we increased the number of real-time multimedia applications/atter application. \Wh the defult user parameters in SVR4-TS,
in the mix up to 15, at which point no further multimedia applica- WFQ, and SMAR, we epect the remainder of the computation

tions could be run due to there being no more memory to allocate tdime to be distribted eenly betweerNews video, Entertain and
the applications. Dhrystone Even with arideal schedulewe epect the percentages
The UNIX SVR4 contet switch time essentially measures the ©f the frames dropped to be 25% and 45% Ksws video
context switch averhead for a scheduler thatéskalmost no time to ~ @ndEntertain respectiely.) , _
decide what task it needs teeeute. The scheduler simply selects Figure 3 presents the CPU allocation acrosterdifit applica-
the highest priority task taxecute, with all tasks already sorted in ions by diferent schedulers. It includes the percentage of the CPU
priority order Note that this measure does not account for the peri- Used for gecuting other system functions such as the wingigs-
odic processing done by the UNIX SVR4 timesharing poli tem (labeledDthe). The figure also includes thepected result of
adjust the priority feels of all tasks. Such periodic processing is not an ideal scheduler for comparison purposes tiie real-time appli-
required by WFQ or SMAR which males the comparison of catlons, the flgure.also sls the percentages of megﬂa un|t$ that
overhead based on cokrteswitch times moreaforable for UNIX are displayed on-time, earliate,or dropped. br the interactie
SVR4. Neertheless, as tasks are typically scheduled for time 1YPing application, the figure s the number of characters that
quanta of seeral milliseconds, the measured cantewitch times ke less than 50 ms to displagle 50-150 ms to displapnd tak
for all of the schedulers were not found toéna significant impact ~ /onger than 150 ms to displakigure 4 presents more detail by
on application performance. shaving the distrilitions of the data points. &\have also included
For SMART, we also measured the cost to an application of the measurements for each of the applications running by itself
assigning scheduling parameters such as time constraints or readinggeledStandalongin the figure. W obsere that gery scheduler
back scheduling information. The cost of assigning scheduling Nandles theNews audio application well with no audio dropouts.
parameters to a task is P8 while the cost of reading the schedul- Thus we Wlll qnly concentrate on discussing the quality of the rest
ing information for a task is only 1@s. The small verhead easily ~ Of the applications. _
allows application deelopers to program with time constraints at a Unlike the other schedulers, the SVRR-Rcheduler gies

fine granularity without much penalty to application performance. higher priority to applications in the real-time class. itodes most
of the CPU time to the video applications, and thus drops the least

number of frames. (Nertheless, SMAR is able to delier more
on-time frames than SVR4¥Ror theNews video, while using less

6.3 Scheduler characteristics

6.4 Comparison of default scheduler behaor

Our first experiment is simply to run all four applicatiofiéens, resources.) Unfortunatel$VR4-R runs the real-time applications
Entertain Typing andDhrystong with the de#ult user parameters ~ almost to the xclusion of comentional applicationsDhrystone
for each of the schedulers: gets only 1.6% of the CPU time. More disturbinghe interactie

Typing application does not get wen the little processing time
requested, recdng only 0.24% of the CPU time. Only 635 out of
the 1314 characters typed aver processed within the 300 second
duration, and nearly all the characters processeel &a unaccept-
able lateng of greater than 150 ms. Note that puttiiygingin the

* SVR4-RT: The real-timeNews andEntertainapplications are
put in the real-time class, Miag TypingandDhrystonein the
time-sharing class.

11

News video Entertain

30 T T T T T 30 T T T T
Standalone —— Standalone ——
25 | SVR4-RT --—--- 25 L SVR4-RT --——-
SVR4-TS ----- SVR4-TS -----
3 WFQ 3 WFQ
% 20 | SMART === % 20 | SMART ===
g g
2 15 | E 2 15| ; :
S S |
S S 1
8 101 8 8 101 R 8
@ N : @ AR
a LA YN a W R
5| Lo \\\ i 5 | ’,"l A i
0 Lo e LNy 0 r"‘o‘j e [
-100 -50 0 50 100 150 200 -100 -50 0 50 100 150 200
Actual minus desired display time (ms) Actual minus desired display time (ms)
- Typing Dhrystone
8 100 T T ™ T 300 T T T T T
2 99 ___..--Standalone — | Standalone
e : SVR4-RT - < 950 | SVR4-RT - |
S 80 SVR4-TS ----- - o SVR4-TE -
g WFQ E Q
g 70 SMART === s = 200 | ART === i
T 60 B s
S]
& 50 R x 150 - R
o [0}
“Cd 40 - %
g 30 - S W00F
o S
[i =1
% 20 § 50 |
S 10 —
E 1
3 0O : A== S 0
50 100 150 200 250 0 50 100 150 200 250 300
Character latency (ms) Elapsed wall clock time (s)

Figure 4: Distrib utions of quality metrics

real-time class does not allate this problem as the systermde shawn in Figure 4, the late frames are handled soon after the dead-
1/0O processing required by the application is still not able to run, lines, unlile the case with the other schedulers. As SVARBIvers
because system functions are run atveetopriority than real-time a more predictable beliar, the applications are better at determin-
tasks. Clearlyit is not acceptable to use the SVRB-$theduler ing hav long to sleep towmid delay displaying the frames too

All the other schedulers spread the resources velatevenly early As a result, there is a relaly small number of early frames.
across the three demanding applications. The SVR4-TS schedulelt delivers on time 57% and 37% of the total number of frames in
has less control ver the resource distiion than WFQ and News video andEntertain respectiely. They represent, respec-

SMART, resulting in a slight bias wards Entertain over Dhrys- tively, 86% and 81% of the frames displayed.

tone The basic principles used to aclidairness across applica- To understand the significance of the bias introduced to pro
tions are the same in WFQ and SMRRiowever, we obserg that the real-time and interaeé application performance, weveaalso
WFQ scheduler detes slightly more (3.8%) CPU time Bhrys- performed the samexgeriment with all biases set to zero. The use
tone at the &pense ofNews video. This dect can be attrilted to of the bias is found to yield a 10% relatimprozement on the

the standard implementation of WFQ processor schedulingschedules ability in delvering theEntertainframes on time.

whereby the proportional share of the processor obtained by a task In contrast, the WFQ dekrs 32% and 26% of the total frames

is based only on the time that the task is runnable and does nobn time, which represents only 53% and 58% of the frames pro-

include an time that the task is sleeping. cessed. There are nyamore late frames in the WFQ case than in
Since the video applications either process a frame or discard &MART. The tardiness causes the applications to initiate the pro-

frame altogether from the i@ning, the number of video frames cessing earliethus resulting in a correspondinglydar number of

dropped is directly correlated with the amount of timeotkd by early frames. The SVR4-TS performgr more poorlydelivering

the scheduler to the applicationsgawlless of the scheduler used. 15% and 11% of the total frames, representing only 22% and 21%

The diference in allocation accounts for thef@iénce in the num- of the frames processed. Some of the frames handled by SVR4-TS

ber of frames dropped between the schedulees.falind that in are atremely late, causing mgrirames to be processextremely

each instance the scheduler drops about 6-7% more frames than thearly, resulting in a ery lage \ariance in display time across

ideal computed usingvarage computation times and the sched- frames.

uler’s specific allocation for the application. Finally, as shwn in Figure 4, SMAR is superior to both
The schedulers are distinguished by their ability to meet the SVRT-TS and WFQ in handling th&ping application. SMAR
time constraints of those frames processed. SMARets a signif- has the leastvarage and standard uiion in character lategc

icantly lager number of time constraints than the other schedulers,and completes the most number of characters in less than 50 ms,
delivering aver 250% more video frames on time than SVR4-TS the threshold of human detectable delay

and arer 60% more video frames on time than WFQ. SNIAR While both SMAR and WFQ delier acceptable interaet
effectiveness holdsven for cases where it processes gdatotal performance,Typing performs verse with WFQ because a task
number of frames, as in the comparison with WFQ. M@eas does not accumulate yaoredit at all when it sleeps.a\performed

12

CPU allocation 1|BISWS audio News video Entertain Typing

100 100
k5
@ Other L O skipped [0 Skipped g W Latency > 150ms
o 80 O News audio % W Late $ 80 1 W Late 1] [Latency 50-150ms
g [0 News video © O Early % O Early Q M Latency < 50ms
a B Entertain 8 M OnTime &= M On Time &
S 60 0 Typing g g 60 8
o W Dhrystone < o S
b i 5 5
S 40 5 = 40 <]
e e Q 5
1] S [°
® 2 e & =
s 20 8
[}
o
0 = T T E T E 03 B T E T E
gL it g if R g it
= = = = - = - = = =
7] 7] 7] 7] n n 7] 7]
Phase 1 Phase 2 Phase 1 Phase 1 Phase 1 Phase 2 Phase 1 Phase 2
Figure 5: SMART application performance under a changing load when using end user coots
an periment where the WFQ algorithm is modified to\alline quite close to the ideal. First, it implements proportional sharing
blocked task to accumulate limited credit just asauidl when run well in both underloaded andverloaded conditions. Second,
on the SMAR schedulerThe result is thalypingimproves signif- SMART performs well for higher priority real-time applications

icantly and the video application gets airér share of the and real-time applications requesting less than tlagirshare of
resources. Hoever, even though the number of dropped video resources. In the first phase of the computation, itiges perfect

frames is reduced slighflythe modified WFQ algorithinas News audio performance, and dadis 97% of the frames dfews
roughly the same poor performance as before when it comes tosideo on time and meets 99% of the deadlines. In the second phase,
delivering the frames on time. SMART displays 98% of th&ntertain frames on time and meets
99% of the deadlines. Third, SMARs able to adjust the rate of
6.5 Adjusting the allocation of resources the application requesting more than ## share, and can meet a
reasonable number of its deadlines. In the first phadenfertain
Besides being &dctive for real-time applications, SMARhas SMART drops only 5% more total number of frames than the ideal,

the ability to support arbitrary shares and priorities and to adapt towhich is calculated using/arage gecution times and an allocation
different system loads. &Mllustrate these features by running the of 33% of the processor time. FinalMART provides ecellent

same set of applications from before withfeiént priority and interactve response fofypingin both werloaded and underloaded
share assignments underfeliént system loads. In particylaews conditions. 99% of the characters are displayed with a delay unno-
is given a higher priority than all the other applicatidbstertainis ticeable to typical users of less than 100 ms [4].

given the dedult priority and twice as mgnshares as gnother
application, and all other applications argegi the same dadilt i
priority and share. This Vel of control aforded by SMAR's pri- 7 Concluding remarks
orities and shares is not possible with other schedulers.Xpes-e Our experiments in the conte of a full featured, commercial,
ment can be described indvphases: general-purpose operating systemvshbat SMART: (1) reduces
* Phase 1Run all the applications for the first 120 seconds of the hurden of writing adapie real-time applications, (2) has the
the experiment.News exits after the first 120 seconds of the ability to cooperate with applications in managing resources to

experiment, resulting in a load change. meet their dynamic time constraints, (3)yides resource sharing
« Phase 2 Run the remaining applications for the remaining across both real-time and eemtional applications, (4) deérs
180 seconds of thexgeriment. improved real-time and interacé performance\er other schedul-

ers without ap need for users to reservesources, adjust schedul-
ing parameters, or kmoarything about application requirements,
(5) provides flible, predictable controls to allousers to bias the
gllocation of resources according to their preferences. SMAR
achieves this range of bewiar by differentiating between the
importance and geng of real-time and carentional applications.
This is done by ingrating priorities and weightedif queueing for
importance, then usinggeng to optimize the order in which tasks
are serviced based on earliest-deadline scheduling. Our measured
performance results demonstrate SMA&Refectiveness wer that

of other schedulers in supporting multimedia applications in a real-
istic workstation emironment.

BesidesNews and Entertain the only other time-consuming
application in the system Bhrystone Thus, in the first part of the
experiment,News should be allved to use as much of the proces-
SOr as necessary to meet its resource requirements since it is high
priority than all other applications. Sinbkaws audio uses less than
3% of the machine andews video uses only 42% of the machine
on average, wer half of the processartime should remainvail-
able for running other applications. Agping consumes ery little
processing time, almost all of the remaining computation time
should be distribted betweerEntertainandDhrystonein the ratio
2:1. The time allotted t&ntertaincan service at most 62% of the
deadlines on\eerage. WherNews finishes, hwever, Entertain is
allowed to tak up to 2/3 of the processevhich would allav the
application to run at full rate. The system is persistervéyloaded Acknowledgments
in Phase 1 of thexperiment, and onvarage underloaded in Phase)))

2, though transientverloads may occur due to fluctuations in pro- We thank Jim Hank Duane Northcutt, and Brian Schmidt for
cessing requirements. their help with the appllcatlons and measurem.ent tools used in our

Figure 5 shws the CPU allocation and quality metrics of the €<periments. W also thank Jim, Duane, Amy Lim, Mendel Rosen-
different applications run under SMARis well as an ideal sched- blum, Alice Y, Rich Drares, and the conference referees for help-
uler. (Distributions of the data points are not included here due to ful comments on earlier drafts of this pap@ihis vork was
lack of space.) The figure shis that SMAR's performance comes

13

supported in part by an NSFohg Irvesticgator Avard and Sun
Microsystems Laboratories.

References

1.

10.

11.

12.

13

14.

15.

16.

17.

18.

19.

20.
21.
22.

V. Baiceanu, C. Gean, D. McNamee, C. Pu, J.algole, “Multimedia
Applications Require Adape CPU Scheduling”, Proceedings of the
IEEE RTSS Wrkshop on Resoce Allocation Poblems in Multimedia
SystemsWashington, DC, Dec. 1996.

J. C. R. Bennett, H. Zhang, “\WO: Worst-case &r Weighted fir
Queueing”,IEEE INFOCOM ‘96 San Francisco, CA, pp. 120-128,
Mar. 1996.

G. Bollella, K. Jeflay, “Support for Real-ime Computing Mithin
General Purpose Operating Systems: Supporting Co-Resident Operatin
Systems”, Proceedings of the IEEE Readhie TEdinolggy and
Applications SymposiunChicago, IL, pp. 4-14, May 1995.

S. K. Card, TP Moran, A. Nevell, The Psyhology of Human-
Computer Intesiction L. Erlbaum Associates, Hillsdale, NJ, 1983.

G. Coulson, A. Campbell,. RRobin, G. Blair M. Papathomas, D.
Hutchinson, “The Design of a QoS ControlledTM\ Based
Communications System in ChorusEEE JSA, 13(4), pp. 686-699,
May 1995.

H. Custerinside Vihdows NT Microsoft Press, Redmond,AV1993.

A. Demers, S. Ksha, S. Shenér, “Analysis and Simulation of aalf
Queueing Algorithm” Proceedings of SIGCOMM ‘8%p. 1-12, Sept.
1989.

M. Dertouzos, “Control Robotics: The Procedural Control ofsifal
Processors”Proceedings of the IFIP Conggs Stockholm, Sweden,
pp. 807-813, Aug. 1974.

R. B. Essick, An Event-based &r Share SchedulerRroceedings of
the 1990 Witer USENIX Confeance Washington, DC, pp. 147-161,
Jan. 1990.

S. Ewns, K. Clark, D. Singleton, B. Smaalders, “Optimizing Unix
Resource Scheduling for User InteractioRtpoceedings of the 1993
Summer USENIX Confance Cincinnati, OH, pp. 205-218, June 1993.
J. R. Eykholt, S. R. Kleiman, S. Barton, Raulkner A. Shialingiah,
M. Smith, D. Stein, J. &, M. Weeks, D. Wliams, “Beyond
Multiprocessing...Multithreading the SunOSeridel”, Proceedings of
the 1992 Summer USENIX Comfiece San Antonio, TX, pp. 11-18,
June 1992.

P Ffoulkes, D. Wkler, “Workstations Wrldwide Marlet
Segmentation”, Advanced Desktops and oWstations \Wrldwide
Dataquest, June 1997.

.N. G. Fosback Stok Market Lagic, Institute for Econometric Research,

Ft. Lauderdale, FL, 1976.

L. Geogiadis, R. Guérin, VPeris, K. N. Siarajan, “Eficient Network
QoS Preisioning Based on per Noderaffic Shaping”, [IEEE/ACM
Transactions on Networking(4), pp. 482-501, Aug. 1996.

D. B. Golub, “Operating System Support for €séence of Realifme
and Conentional Scheduling”, dchnical Report CMU-CS-94-212,
School of Computer Science, CagieeMellon Unversity Nov. 1994.

P. Goyal, X. Guo, H. M. \h, “A Hierarchical CPU Scheduler for
Multimedia Operating SystemsProceedings of the Second Symposium
on Opeating Systems Design and ImplementatiSeattle, \&, pp.
107-122, Oct. 1996.

P. Goyal, Panel talk at théEEE RTSS Wkshop on Resoce Allocation
Problems in Multimedia Systemdashington, DC, Dec. 1996.

J. G. Hanb, “A New Framevork for Processor Scheduling in UNIX”",
Abstract talk at therourth International Wrkshop on Network and
Operating Systems Support for Digitaléio and Weq, LancasterU.
K., Nov. 1993.

G. J. Henry “The Rair Share Scheduler”, T&T Bell Laboratories
Technical Journal, 63(8), pp. 1845-1858, Oct. 1984.

IEEE Micm, 15(4), Aug. 1996.

M. B. Jones, personal communication, July 1997.

M. B. Jones, D. Rosu, M-C. Rosu, “CPU Reaébns and ime
Constraints: Hicient, Predictable Scheduling of Independent
Activities”, Proceedings of the Sixteent@M Symposium on Opmg
Systems PrinciplesSt. Malo, France, Oct. 1997.

23.

24.

25.

26.
%7,

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

S. J. Lefler, M. K. McKusick, M. J. Karels, J. S. Quartermarhe
Design and Implementation of the 4.3BSD UNIX @peg System
Addison-W\éslg/, Reading, MA, 1989.

J. Lehoczl, L. Sha, Y Ding, “The Rate Monotonic Scheduling
Algorithm: Exact Characterization andveékage Case Behar”,
Proceedings of the IEEE Redhie Systems Symposiupp. 166-171,
Dec. 1989.

I. M. Leslie, D. McAulg, R. Black, T Roscoe, PBarham, D. Eers, R.
Fairbairns, E. Hyden, “The Design and Implementation of an Operating
System to Support Disttitted Multimedia Applications’|EEE JSA,
14(7), pp. 1280-1297, Sept. 1996.

C. L L, J. W Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Realifie Ervironment”, JACM, 20(1),
pp. 46-61, Jan. 1973.

C. D. Locle, “Best-Efort Decision Making for Realife Scheduling”,
Ph.D. Thesis, Department of Computer Science, Q@n#&lellon
University May 1986.

C. W. Mercer S. Saage, H. ®kuda, “Processor Capacity Ressv
Operating System Support for Multimedia ApplicationBrpceedings
of the |IEEE International Confence on Multimedia Computing and
SystemsBoston, MA, pp. 90-99, May 1994.

J. Nieh, J. G. Hark J. D. Northcutt, G. A. ll, “SVR4 UNIX
Scheduler Unacceptable for Multimedia ApplicatiorBfpceedings of
the Fourth International Wrkshop on Network and Omging Systems
Support for Digital Adio and Weqg, LancasterU. K., pp. 35-48, Na
1993.

J. Nieh, M. S. Lam, “SMAR UNIX SVR4 Support for Multimedia
Applications”, Proceedings of the IEEE International Comfiece on
Multimedia Computing and Syster@tava, Canada, pp. 404-414, June
1997.

J. D. Northcutt, Mechanisms for Reliable Distrilied Real-me
Opeiating Systems: The Alpheaetfel Academic Press, Boston, MA,
1987.

J. D. Northcutt, E. M. Kerner “System Support for ifhe-Critical
Applications”, Proceedings of the Second Internationabrk§hop on
Network and Opeting Systems Support for Digitaudio and \eg,
Lecture Notes in Computer Science).\614, Heidelbey, Germaw, pp.
242-254, Ne. 1991.

A. K. Parekh, R. G. Gallager‘A Generalized Processor Sharing
Approach to Fler Control in Intgrated Services Netwks: The Single-
Node Case”,|[EEE/ACM Transactions on Networkingpp. 344-357,
June 1993.

“PointCast Uneils First Nevs Network that Reachesisvers at Their
Desktops”, Press Release, PointCast Inc., San Francisco, CAl3eb
1996.

R. W. Scheifler J. Gettys, “The X \idow SystemACM Transactions
on Graphics 5(2), pp. 79-109, Apr1986.

B. K. Schmidt, A Method and Apparatus for Measuring Media
Synchronization”,Proceedings of theifth International Vdrkshop on
Network and Opeting Systems Support for Digitaudio and Weq
Durham, NH, pp. 203-214, Apt995.

B. ShneidermanDesigning the User Interface: &tegies for Efective
Human-Computer Intection 2nd ed., Addison-@5leg/, Reading, MA,
1992.

I. Stoica, H. Abdel-Vhab, K. Jday, “On the Duality between
Resource Reseation and Proportional Share Resource Allocation”,
Multimedia Computing and Networkingdeeedings, SPIE Bceedings
Series Vol. 3020, San Jose, CA, pp. 207-214,.FP497.

UNIX System V Release 4 Internals Student Gldle |, Unit 2.4.2.,
AT&T, 1990.

C. A. Waldspuger “Lottery and Stride Scheduling: Kible
Proportional-Share Resource Management”, Ph.D. Thesis, Department
of Electrical Engineering and Computer Science, Massachusetts
Institute of Bchnology Sept. 1995.

14

