TCP: Overview

O point-to-point:

0 one sender, one receiver
O reliable, in-order byte

steam:

0 no “"message boundaries”
0 pipelined:

0 TCP congestion and flow

control set window size

RFCs: 793, 1122, 1323, 2018, 2581

0 full duplex data:

O bi-directional data flow
in same connection

0 MSS: maximum segment

size
O connection-oriented:

0 handshaking (exchange
of control msgs) init's
sender, receiver state
before data exchange

O flow controlled:

0 sender will not
overwhelm receiver

3: Transport Layer 3b-1

TCP segment structure

«— 32bits —

URG: urgent data
(generally not used)™_|

source port #

dest port # counting

ACK: ACK #

Sequence number

by bytes
of data

valid

——{—acknowledgement number

(not segments!)

PSH: push data now

head| not
e tozza | IPP RISF

rcvr window size

(generally not used) | cheeksum

bytes
revr willing

ptr urgent data

RST, SYN, FIN:—|
conhection estab

Op% (variable length)

to accept

(setup, teardown

commands) application
Internet data
checksum (variable length)
(as in UDP)

3: Transport Layer 3b-2

TCP seq. #'s and ACKs

Seq. #'s:
0 byte stream >
"number" of first fusfs 82442, 4.
byte in segment's 4 W
data host ACK:
. . receipto
adks: A3 gaa=5— 'C, echoes
0 seq # of next byte o™ poKEAS: back 'C
expected from
other side host ACKs
0 cumulative ACK receipt Se
. hoed —97%3 Acy
Q: what receiver does w/ of e‘cc. e Ck=s0
out-of-order segments
0 TCP spec doesn't

time
. T ‘ .
say, - up to TCP simple telnet scenario
implementor

3: Transport Layer 3b-3

TCP: reliable data transfer

event: data received . cr .
from application above simplified sender, assuming

create, send segment *one way data transfer
*no flow, congestion control

event: timer timeout for
segment with seq # y

event retransmit segment

O

event: ACK received,
with ACK #y

ACK processing

3: Transport Layer 3b-4

TCP:
reliable
data
transfer

Simplified
TCP
sender

sendbase = initial_sequence number
nextseqnum = initial_sequence number

loop (forever) {
switch(event)
event: data received from application above
create TCP segment with sequence number nextsegnum
start timer for segment nextsegnum
pass segment to IP
nextsegnum = nextsegnum + length(data)
event: timer timeout for segment with sequence number y
retransmit segment with sequence number y
compute new timeout interval for segment y
restart timer for sequence number y
event: ACK received, with ACK field value of y
if (y > sendbase) { /* cumulative ACK of all data up to y */
cancel all timers for segments with sequence numbers <y
sendbase = y

}
else { /* a duplicate ACK for already ACKed segment */
increment number of duplicate ACKs received for y
if (number of duplicate ACKS received for y == 3) {
/* TCP fast retransmit */
resend segment with sequence number y
restart timer for segment y

} /* end of loop forever */

3: Transport Layer 3b-5

TCP ACK generation [RFc 1122, RFC 2581]

Event TCP Receiver action
f in-order segment arrival, delayed ACK. Wait up to 500ms
I noogaps, for next segment. If no next segment,
everything else already ACKed send ACK
f in-order segment arrival, immediately send single
B nogaps, cumulative ACK

one delayed ACK pending

J out-of-order segment arrival send duplicate ACK, indicating seq. #

gap detected

higher-than-expect seq. # of next expected (missing) byte

N E arrival of segment that immediate ACK if segment starts
partially or completely fills gap at lower end of gap

3: Transport Layer 3b-6

TCP: retransmission scenarios

Q=

T 9=9 8 bytes da
-
g c\(:lo
£
= X
l loss

Seq=g

2, 8
WA
C\(:lo

time lost ACK scenario

92 fim;.ulf—ﬂ

100 timeout:

Segq=
*+ Seq

.

time

premature timeout,
cumulative ACKs

3: Transport Layer 3b-7

TCP Flow Control

flow control
sender won't overrun
receiver's buffers by
transmitting too much,
too fast

JF_ RevWindow —*

data from

//’/ e :;%
i
b—— RevBuffr ———

receiver buffering

receiver: explicitly
informs sender of
(dynamically changing)
amount of free buffer
space
O rcvr w ndow
si ze field in TCP
segment

sender: amount of
transmitted, unACKed
data less than most
recently-received r cvr
wi ndow si ze

3: Transport Layer 3b-8

TCP Round Trip Time and Timeout

Q: how to set TCP Q: how to estimate RTT?
timeout value? 0 Sanpl eRTT: measured time from
0 longer than RTT segment transmission until ACK

receipt

O ignore retransmissions,
) cumulatively ACKed segments
timeout Y 9

0 or timestamp pkts
0 unnecessary ,
retransmissions 0 Sanpl eRTT wull“vary, wam‘"
) : estimated RTT "smoother
0 too long: slow reaction

to segment loss O use several recent

measurements, not just
current Sanpl eRTT

0 note: RTT will vary
0 too short: premature

3: Transport Layer 3b-9

TCP Round Trip Time and Timeout

Estimat edRTT = (1-x)*Estimat edRTT + x*Sanmpl eRTT

0 Exponential weighted moving average
0 influence of given sample decreases exponentially fast
O typical value of x: 0.1

Setting the timeout

0 RTT plus "safety margin”
0 large variation in Esti mat edRTT - > larger safety margin

Ti meout

Esti mat edRTT + 4*Devi ati on

Deviation = (1-x)*Deviation +
x*abs(Sanpl eRTT- Esti mat edRTT)

3: Transport Layer 3b-10

TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

0 initialize TCP variables:

0 seq. #s
0 buffers, flow control
info (e.g. RevW ndow)

O client: connection initiator

Socket clientSocket = new
Socket (" host nane", "port

nunmber ") ;
0 server: contacted by client

Socket connectionSocket =
wel coneSocket . accept () ;

Three way handshake:

Step 1: client end system
sends TCP SYN control
segment to server

0 specifies initial seq #

Step 2: server end system
receives SYN, replies with
SYNACK control segment

0 ACKs received SYN
0 allocates buffers

0 specifies server->
receiver initial seq. #

3: Transport Layer 3b-11

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
cl i ent Socket . cl ose();

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.

Closes connection, sends
FIN.

ﬂggk client

close

server@

Fin

C)
£ close

\

N

ACk

d wait

Q. time

close

3: Transport Layer 3b-12

TCP Connection Management (cont.)

Step 3: client receives FIN, @ client server@
replies with ACK.

closing .
0 Enters “timed wait" - U
will respond with ACK
to received FINs NS .
closing
Step 4: server, receives 5>
ACK. Connection closed.
5 ACk
Note: with small =
modification, can handle E closed
simultaneous FINs. F
closed

3: Transport Layer 3b-13

TCP Connection Management (cont)

client application
initiates a TCP connection

wait 30 secands

send SYN

SYN_SENT

TIME_WAIT

receive FIN receive SYN & ACK
send ACK send ACK

FIN_WAIT_2 ESTABLISHED

TCP server
S lifecycle

receive ACK initiates close connection

sl =i server appation
receive ACK creates alisten socket

TCP C | | en'r send nothing

lifecycle

LISTEN

LAST_ACK

receive SYN
send FIN send SYN & ACK

CLOSE_WAIT SYN_RCVYD

receive ACK

send nothing
receive FIN

send ACK

ESTABLISHED

3: Transport Layer 3b-14

Principles of Congestion Control

Congestion:
0 informally: “too many sources sending oo much
data too fast for network to handle”

0 different from flow control!
0 manifestations:
0 lost packets (buffer overflow at routers)
0 long delays (queueing in router buffers)
0 a top-10 problem!

3: Transport Layer 3b-15

Causes/costs of congestion: scenario 1

0 two senders, two %lin: original data)
receivers
foss —
O gng rrouTer‘, Capacity C :
.)
[0 no retransmission e e win

infinite buffers

cr4 N . 0 large delays
. § when congested
< 0 maximum
achievable
throughput
D C/2 A, C/2 gnp

3: Transport Layer 3b-16

Causes/costs of congestion: scenario 2

[one router, finite buffers
0 sender refransmission of lost packet

Host A o
ﬂ’xin: original data == Ao
o "7\'in’ = original +
Host B retrans.

\

Py
()
N’
router with
finite buffers

3: Transport Layer 3b-17

Causes/costs of congestion: scenario 2

0 always:)\in:)\out (goodput), but can have)\in>)\ou

0 “perfect” when only retransmit lost pkts

0 retransmission of delayed (not lost) packet makes)\iln larger
(than perfect case) for same

t

out

Cr2 Cr2 C/2
5 ci

¢ - =

< 3 3

< i <

.SC‘| .IéC .5Cl
I I
7"in 7\'irw

"Perfect” retransmit lost Extraneous retransmit
"costs" of congestion:

0 more work (retrans) for given "goodput”
0 unneeded retransmissions: link carries multiple copies of pkt
3: Transport Layer 3b-18

Causes/costs of congestion: scenario 3

0 four senders Q: what happens as)\in

0 multihop paths and N increase ?
O timeout/retransmit n

Host A Host B
| N
)
Host D > LLFIQ'I]'LUV 1

1 RQEég Host C
R4 TN o]
% s (D i_
yanNENNINN| —
U LT —

N L | N

3: Transport Layer 3b-19

Causes/costs of congestion: scenario 3

Host B

C/Q 1 Host A
3 g
C< rm ;> i ; Host C

7\’!
in
Another “cost"” of congestion:

01 when packet dropped, any "upstream transmission
capacity used for that packet was wasted!

3: Transport Layer 3b-20

10

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion
control:

O no explicit feedback from
network

0 congestion inferred from

end-system observed loss,

delay
0 approach taken by TCP

Network-assisted
congestion control:

0 routers provide feedback
to end systems
0 single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

0 explicit rate sender
should send at

3: Transport Layer 3b-21

Case study: ATM ABR congestion control

ABR: available bit rate:

O ‘“elastic service"
0 if sender’s path
“underloaded":
0 sender should use
available bandwidth
0 if sender’s path
congested:
0 sender throttled to
minimum guaranteed
rate

RM (resource management)
cells:

0 sent by sender, interspersed
with data cells

0 bits in RM cell set by switches
("network-assisted")

0 NI bit: no increase in rate
(mild congestion)
0 CI bit: congestion
indication
0 RM cells returned to sender by
receiver, with bits intact

3: Transport Layer 3b-22

11

Case study: ATM ABR congestion control

I RM cells

source I] data cells destination
— .|

Switch Switch
S1IIE Syq il il {Fqill e
H— 1 1

0 two-byte ER (explicit rate) field in RM cell

0 congested switch may lower ER value in cell

0 sender’ send rate thus minimum supportable rate on path
0 EFCI bit in data cells: set to 1 in congested switch

0 if data cell preceding RM cell has EFCI set, CI bit set in
returned RM cell

3: Transport Layer 3b-23

TCP Congestion Control

0 end-end control (no network assistance)

0 transmission rate limited by congestion window
Size, Congwi n, over segments:

send_base nextsegnum dlready usable, not
i B v ack’ed I yet sent
TRTCEC T ITOII0000NT 1 semmetea] moencoe
t— congwi n—
[l w segments, each with MSS bytes sent in one RTT:
* MSS
throughput = ¥
oughpu RTT Bytes/sec
0 Congestion Window never larger than rcvr-
advertised window 3: Transport Layer 3b-24

12

TCP congestion control.

0 “probing” for usable
bandwidth:

0 ideally: transmit as fast
as possible (Congwi n as
large as possible)
without loss

O increase Congwi n until
loss (congestion)

0 loss: decrease Congwi n,
then begin probing
(increasing) again

0 two "phases”
0 slow start
0 congestion avoidance

0 important variables:
0 Congwi n
0 threshol d: defines
threshold between slow
start phase and
congestion control
phase

3: Transport Layer 3b-25

TCP Slowstart

rSlowstart algorithm

initialize: Congwin =1
for (each segment ACKed)
Congwin++
until (loss event OR
CongWin > threshold)

0 exponential increase (per
RTT) in window size (not so
slow!)

O loss event: timeout (Tahoe
TCP) and/or or three
duplicate ACKs (Reno TCP)

time

3: Transport Layer 3b-26

13

TCP Congestion Avoidance

(Tahoe)

-Congestion avoidance

/* slowstart is over */ 13
[* Congwin > threshold */
Until (loss event) {

threshold

=
5]
5
every w segments ACKed: ;: i A R
i I I A N threshold
Congwin++ g
} s
threshold = Congwin/2 g,
COﬂngnzl “\\I\II\II\\I\\
perl:orm SIOWStart 012345678 91011121314

Number of transmissions

1: TCP Reno skips slowstart (fast
recovery) after three duplicate ACKs
3: Transport Layer 3b-27

TCP Reno

0 Most of today's TCPs are Reno
[0 Same behavior as Tahoe on timeout
0 On Triple-duplicate ACK:

0 Tahoe does nothing (no window change)

0 Reno:
* Threshold = congwin / 2
+ congwin = congwin / 2

3: Transport Layer 3b-28

14

AIMD

TCP congestion
avoidance:

0 AIMD: additive
Increase,
multiplicative
decrease
0 increase window by 1

TCP Fairness

Fairness goal: if N TCP
sessions share same
bottleneck link, each
should get 1/N of link
capacity

TCP connection 1

per RTT @
0 decrease window by

factor of 2 on loss

event
TCP@ bo‘rﬂineck
connection 2 rourer
capacity R

3: Transport Layer 3b-29

Why is TCP fair?

Two competing sessions:
O Additive increase gives slope of 1, as throughout increases
O multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput 7

Connection 1 throughput R

3: Transport Layer 3b-30

15

Effects of TCP latencies

Q: client latency from
object request from
WWW server to
receipt?

O TCP connection
establishment

0 data transfer delay

Notation, assumptions:

0 Assume: fixed congestion
window, W, giving
throughput of R bps

0 S: MSS (bits)

0 O: object size (bits)

no retransmissions (no loss,

no corruption)

|

Two cases to consider:

0 WS/R>RTT + S/R: ACK for first segment in
window before window's worth of data sent

0 WS/R <RTT + S/R: wait for ACK after sending
window's worth of data sent

3: Transport Layer 3b-31

Effects of TCP latencies

initiste TCP

comection T

e
o
e
e IRTT
st

request e
F 1T s
p FIT

chject —®[SIL L
A lstack

returns

b g

QR

time ¥ ¥ ime

at cliert at server

Case 1: latency = 2RTT + O/R

WsiR

iniiate TCP
connection -
7l | mrT
request .
ohject — [T
: 3R
W3R
RTT

Istack
returms

lime

time
atchent ¥

at server

Case 2: latency = 2RTT + O/R
+(K-1[S/R + RTT - WS/R]

3: Transport Layer 3b-32

16

Chapter 3: Summary

0 principles behind
transport layer services:
0 multiplexing/demultiplexing ~ Next:
0 reliable data transfer 0 leaving the network
o flow control “edge” (application

. transport layer)
0 congestion control , .
. - 0 into the network "core
U instantiation and

implementation in the Internet
o UDP
o TCP

3: Transport Layer 3b-33

17

