Data Transfer Case Study: TCP

0 Go-back N ARQ
o 32-bit sequence # indicates byte number in stream
o transfers a byte stream, not fixed size user blocks
o full duplex (bi-rectional) data transfer
o sends upper level data "at its convenience" (RFC793!),
trying to accumulate 512 bytes of data
o cumulative ACK: ACK(n) ack’s all bytes up through
n
o ACK for received A-to-B data piggybacked on B-to-A
data packet
0 Internet checksum: add up data, take 1's
complement
o covers both header and data

TCP Packet Format

32 bits

A
v

Data Transfer: XTP

0 XTP: Xpress transfer protocol

0 designed for high-speed, high-performance
networks

0 32-bit sequence numbers with transition to 64-bit
seq. numbers

0 32-bit priority field for different priority data
0 user-selectable: reliable or unreliable data transfer

0 Go-Back-N ARQ but receiver can also indicate
spans of packets received
o sender only retransmits gaps

Data Transfer: XTP

0 checksum:
o form of two-dimensional parity
o header and data checksummed separately
o data checksumming can be disabled

o data checksumming at end (send data while
computing checksum (need only touch data once)

Flow and Congestion Control

sometimes sender shouldn’t send a ready
packet:

O receiver not ready (e.g., buffers full)

O react to congestion

o many unACK’ed packets may mean long end-end
delays, congested networks

o network itself may provide sender with congestion
indication
0 avoid congestion:

o sender transmits smoothly to avoid temporary
network overloads

Flow and Congestion Control

flow control: speed and resource matching of
sender and receiver

o sender should not overwhelm receiver

congestion control: action taken in response
to network layer (and below) congestion

0 throttling sender is but one solution to congestion

The flow control scenario

end system end system
regei_vgr-t_o-ise_nd_er_ f|9V\L c9n_trc_>|
_protoco n AJpch:tocl:(oI 3y |I|I|
_,stackT "~ stac ,u
| —
sender-to-receiver data
subnetwork
END SYSTEM buffers,
RESOURCES processing @

links —

Two approaches towards flow control

Explicit flow control
O receiver tells sender how much to send

SENDER RECEIVER
130 packets sent buffer space for
but unc:cknowledged T 150 more packets
M-irl’] LT AT
can send 30 more packets
before stopping |

=

e?elver -to-send flow control pc:ckeIs

T I I
sender-to-receiver data pqckeIs

I
|
I I

Explicit flow control (cont)

Useful abstraction: sender maintains sliding
window over sequence number, indicating
what it can send

0 done in TCP and TP4

0 congestion (as opposed to flow) control window may
further restrict sender

send_base nexseqnum direccly uscable, but not
¢ acknowledged yet sent

HHHHH{D_IIIIIIHHHHH{HHHHHHH | s | reree

WindO\I,\Iv size of —

Flow Controlin TCP

Receiver explicitly advertises available buffer
space to sender:

0 16-bit "advertised window" specifies number of bytes
(starting from ACKnum) receiver willing to receive

0 max window size is 64K
O recent "scaling” option for larger windows

Sender Receiver

receiver advertises

\Nm:zgﬁ\%7 window size of 2048
can send 1Kbytes, / bytes

send 1K packet

<Seq:10
send 1K packet <Ser (no ACK generated)
flow control window closed \C’%%

A> receiver generates ACK
Y ACK advertises

window of 1024 bytes

,20A91 \Nm:l

can send 1Kbytes,

send 1K packet

<s@ =
flow control window closed 1 3072,da{a>

Implicit flow control

o receipt of ACK’s triggers more sending

0 delayed ACK (for whatever reason) slows
down sender

o IBM virtual route pacing:
o initially send window of N packets
o ACK of first packet in this (and subsequent)
windows of N allows sender to send N more

o jumping”, non-sliding window
o max. number of unACK’ed packets?
o decrease in traffic for explicit flow control

Congestion Control

Temporary demand for shared resources (links,
processing, buffers) in network layer and below may
exceed demand:

0 packets buffered until resources available

0 buffers full: packet lost (discarded)
o which to discard?

0 lots of buffering: excessive delays

input’” outpuf

buffefts buffefs

1 1
1

Congestion Control: retransmission
effects

Ideal case:

O every packet delivered successfully until subnet
reaches capacity

0 beyond capacity: deliver packets at capacity rate

In face of loss or long end-end delay, retransmissions
can make things worse

O inject more (not less) traffic into net
o throwing fuel on fire!

Congestion Control: retransmission effects

T Ilromer I/M>
— </ :

(munni]
11

Y

(a) ideal

throughput
(successful,
non-duplicate
packets/sec
delivered to
destination

05 — — =d

1.0 20
offered load (incl. retr issi

Congestion Control (cont)

Realistically:

0 as offered load increases, more packets lost, causing
more retransmission, causing more traffic, causing
more losses, ...

v at (b), each original packet sent four times on average
o decreasing rate of transmission (e.g., a larger timeout value)
increases overall throughput

Moral:

o0 when losses occur: backoff, don't aggressively
retransmit

However:

o social versus individual good: if most back off (and
suffer) how to handle greedy sender who does not
back off (and benefits)

Three Basic Approaches towards
Congestion Control

End-end congestion control

0 sender-observed congestion (e.g., delays, losses) used to
control sender

0 closed loop control

Network-indicated cong estion control
0 network layer provides feedback to sender

Rate-based control

0 sender behavior fixed (bounded) over time
0 open-loop control

Real-world protocols sometimes mix/combine these

