## Network Security

introduction
cryptography
authentication

- key exchange
. Reading: Tannenbaum, section 7.1
Ross/Kurose, Ch 7 (which is incomplete)


## Network Security



## Intruder may

- eavesdrop
. remove, modify, and/or insert messages
. read and playback messages


## Important issues:

cryptography: secrecy of info being transmitted authentication: proving who you are and having correspondent prove his/her/its identity

## Security in Computer Networks

## User resources:

login passwords often transmitted unencrypted in TCP packets between applications (e.g., telnet, ftp)

- passwords provide little protection



## Network resources:

often completely unprotected from intruder eavesdropping, injection of false messages mail spoofs, router updates, ICMP messages, network management messages

## Bottom line:

intruder attaching his/her machine (access to OS code, root privileges) onto network can override many system-provided security measures users must take a more active role

plaintext: unencrypted message
ciphertext: encrypted form of message

## Intruder may

intercept ciphertext transmission
intercept plaintext/ciphertext pairs
obtain encryption decryption algorithms

## A simple encryption algorithm

## Substitution cipher:

abcdefghijklmnopqrstuvwxyz
poiuytrewqasdfghjklmnbvczx replace each plaintext character in message with matching ciphertext character:
plaintext: Charlotte, my love
ciphertext: iepksgmmy, dz sgby
key is pairing between plaintext characters and ciphertext characters
symmetric key: sender and receiver use same key
26! (approx 10^26) different possible keys: unlikely to be broken by random trials substitution cipher subject to decryption using observed frequency of letters

- 'e' most common letter, 'the' most common word


## DES: Data Encryption Standard

encrypts data in 64-bit chunks encryption/decryption algorithm is a published standard

- everyone knows how to do it
substitution cipher over 64-bit chunks: 56-bit key determines which of 56 ! substitution ciphers used
- substitution: 19 stages of transformations, 16 involving functions of key



## Key Distribution Problem

## Problem: how do communicant agree on

 symmetric key?- N communicants implies N keys


## Trusted agent distribution:

- keys distributed by centralized trusted agent
- any communicant need only know key to communicate with trusted agent
- for communication between i and j, trusted agent will provide a key


2: communicate using key

We will cover in more detail shortly

## Public Key Cryptography

separate encryption/decryption keys

- receiver makes known (!) its encryption key
- receiver keeps its decryption key secret
to send to receiver B, encrypt message M using B's publicly available key, EB
- send EB(M)
to decrypt, B applies its private decrypt key DB to receiver message:
- computing DB( EB(M) ) gives M

knowing encryption key does not help with decryption; decryption is a non-trivial inverse of encryption
only receiver can decrypt message
Question: good encryption/decryption algorithms


## RSA: public key encryption/decryption

RSA: a public key algorithm for encrypting/decrypting
Entity wanting to receive encrypted messages:
choose two prime numbers, $p, q$ greater than $10^{\wedge 100}$
compute $n=p q$ and $z=(p-1)(q-1)$
choose number $d$ which has no common factors with $z$ compute $e$ such that $e d=1 \bmod z$, i.e.,
integer-remainder( (ed) / ((p-1)(q-1)) ) = 1, i.e.,

$$
e d=k(p-1)(q-1)+1
$$

. three numbers:

- e, $n$ made public
- d kept secret


## RSA (continued)

## to encrypt:

divide message into blocks, $\left\{b \_i\right\}$ of size $j: 2^{\wedge} j<n$ encrypt: encrypt(b_i) = b_I^e mod n

## to decrypt:

$b \_i=e n c r y p t\left(b \_i\right)^{\wedge} d$

## to break RSA:

need to know $p, q$, given $p q=n, n$ known
factoring 200 digit $n$ into primes takes 4 billion years using known methods

## RSA example

choose $p=3, q=11$, gives $n=33,(p-1)(q-1)=z=20$
. choose $d=7$ since 7 and 20 have no common factors
compute $e=3$, so that $e d=k(p-1)(q-1)+1$ (note: $k=1$ here)

| plaintext |  | $e=3$ | ciphertext |
| :--- | :--- | :--- | :--- |
| char | $\#$ | $\#^{\wedge} 3$ | \#^ $^{\wedge} 3 \bmod 33$ |
| S | 19 | 6859 | 28 |
| U | 21 | 9261 | 21 |
| N | 14 | 2744 | 5 |


| cipherte <br> xt |  | $d=7$ | plaintex <br> t |
| :--- | :--- | :--- | :--- |
| $c$ | $c^{\wedge 7}$ | $c^{\wedge 7}$ mod | char |
|  |  | 33 |  |
| 28 | 13492928512 | 19 | S |
| 21 | 1801 | 21 | N |

## Further notes on RSA

why does RSA work?

- crucial number theory result: if $p, q$ prime then
$b i^{\wedge}((p-1)(q-1)) \bmod p q=1$
. using mod $p q$ arithmetic:
$\left(b^{\wedge} e\right)^{\wedge} d=b^{\wedge}\{e d\}$

$$
\begin{aligned}
& =b^{\wedge}\{k(p-1)(q-1)+1\} \text { for some } k \\
& =b b^{\wedge}(p-1)(q-1) b^{\wedge}(p-1)(q-1) \ldots b^{\wedge}(p-1)(q-1) \\
& =b 11 \ldots 1 \\
& =b
\end{aligned}
$$

Note: we can also encrypt with $d$ and encrypt with $e$.
. this will be useful shortly

## How to break RSA?

Brute force: get B's public key
. for each possible $b$ _ $i$ in plaintext, compute $b \_^{\wedge} e$ for each observed $b i^{\wedge} e$, we then know $b \_i$ moral: choose size of $b$ _ $i$ "big enough"


```
table of
precomputed
b, b**EB
pairs
```

man-in-the-middle: intercept keys, spoof identity:


3: intercept $b^{* *} E I$
compute $\mathbf{b}=\mathrm{DI}(\mathrm{El}(\mathrm{b}))$
send $b^{* *} E B$

