Network Security

introduction

cryptography

authentication

key exchange

Reading: Tannenbaum, section 7.1
Ross/Kurose, Ch 7 (which is incomplete)

Network Security

@ - cummunI:.aTtiﬂn net P

you

your

computer

bank or
lover

Intruder may

. eavesdrop

. remove, modify, and/or insert messages
. read and playback messages

Important issues:

cryptography: secrecy of info being transmitted

authentication: proving who you are and having
correspondent prove his/her/its identity

Security in Computer Networks

User resources:

login passwords often transmitted unencrypted in
TCP packets between applications (e.g., telnet, ftp)

passwords provide little protection

“— password:
@ S charlie h
your
cﬂmputer

Network resources:

often completely unprotected from intruder
eavesdropping, injection of false messages

mail spoofs, router updates, ICMP messages,
network management messages

Bottom line:

intruder attaching his/her machine (access to OS
code, root privileges) onto network can override
many system-provided security measures

users must take a more active role

Encryption

keyA —» Encryptiun. p| decryption 44— keyB
plaintext —| algorithm ciphertext algorithm | —»
plaintext

intruder

plaintext: unencrypted message

ciphertext: encrypted form of message

Intruder may
intercept ciphertext transmission
intercept plaintext/ciphertext pairs
obtain encryption decryption algorithms

A simple encryption algorithm

Substitution cipher:

abcdef ghi j kI mopqgr st uvwxyz

poi uyt r ewgasdf ghj kl mbvczx
replace each plaintext character in message with
matching ciphertext character:

plaintext: Charl otte, ny |ove

ciphertext: i epksgmmy, dz sgby

key is pairing between plaintext characters
and ciphertext characters

symmetric key: sender and receiver use
same key

26! (approx 10726) different possible keys:
unlikely to be broken by random trials
substitution cipher subject to decryption using
observed frequency of letters

o '@’ most common letter, 'the’ most common word

DES: Data Encryption Standard

encrypts data in 64-bit chunks

encryption/decryption algorithm is a
published standard
o everyone knows how to do it

substitution cipher over 64-bit chunks: 56-bit
key determines which of 56! substitution
ciphers used

o substitution: 19 stages of transformations, 16
involving functions of key

:zyh“_"' DESencryptionI

possihle possible possible
encoded encoded encodead
stream 1 stream 2 stream 10**19

decryption done by reversing encryption steps
sender and receiver must use same key

Key Distribution Problem

Problem: how do communicant agree on
symmetric key?
o N communicants implies N keys
Trusted agent distribution:
o keys distributed by centralized trusted agent

o any communicant need only know key to
communicate with trusted agent

o for communication between i and j, trusted agent
will provide a key

trusted
agent

1: get key 1: get key

(a) » (B8)

2: communicate using Key

We will cover in more detail shortly

Public Key Cryptography

separate encryption/decryption keys

o receiver makes known (!) its encryption key

o receiver keeps its decryption key secret

to send to receiver B, encrypt message M
using B's publicly available key, EB

o send EB(M)

to decrypt, B applies its private decrypt key
DB to receiver message:

o computing DB(EB(M)) gives M

"Charlotte, my love” "Charlotte, my love”

encrg,{ptiun, using EB decryption EB {public)
{obtained from B) using DB m

| clphertext (vislble to all} 1'

knowing encryption key does not help with
decryption; decryption is a non-trivial inverse of
encryption

only receiver can decrypt message

Question: good encryption/decryption
algorithms

RSA: public key
encryption/decryption
RSA: a public key algorithm for encrypting/decrypting

Entity wanting to receive encrypted messages:
choose two prime numbers, p, g greater than 107100
compute n=pg and z = (p-1)(g-1)
choose number d which has no common factors with z
compute e such thated =1 mod z, i.e.,
integer-remainder((ed) / ((p-1)(g-1))) = 1, i.e.,
ed = k(p-1)(g-1) +1
three numbers:
o €, n made public
o d kept secret

RSA (continued)

to encrypt:
divide message into blocks, {b_i} of size j: 2% <n
encrypt: encrypt(b_i) = b_I"e mod n

to decrypt:
b_i =encrypt(b_i)*d

to break RSA:
need to know p, g, given pg=n, n known

factoring 200 digit n into primes takes 4 billion years
using known methods

RSA example

choose p=3, g=11, gives n=33, (p-1)(g-1)=2z=20
choose d = 7 since 7 and 20 have no common
factors

compute e = 3, so that ed = k(p-1)(g-1)+1 (note:
k=1 here)

plaintext e=3 ciphertext

char # #'3 #"3 mod 33

S 19 6859 28

U 21 9261 21

N 14 2744 5
cipherte d=7 plaintex
xt t
c cr7 c”7 mod char

53

28 13492928512 19 S

21 1801 21 N

Further notes on RSA

why does RSA work?
crucial number theory result: if p, g prime then
b_i"((p-1)(9-1)) mod pq = 1
. using mod pqg arithmetic:
(b”e)™d = bMed}

= bMk(p-1)(g-1)+1} for some k
= b b"(p-1)(a-1) b*(p-1)(9-1) ... b*(p-1)(9-1)
=b11..1

=b
Note: we can also encrypt with d and encrypt with e.
this will be useful shortly

How to break RSA?

Brute force: get B's public key
for each possible b_i in plaintext, compute b_i"e
for each observed b_i"e, we then know b _i
moral: choose size of b_i "big enough”

h=EE
@) <] 40
public: EB

el private: DB

table of

precomputed

b, b**EB

pairs

10

man-in-the-middle: intercept keys, spoof identity:

@ 2 return my El 1: get EB

El .DI ‘%pubﬂc:EB
you \ : rivate; DB
m intruder h**EB 7

3: intercept h**El
compute b = DI (EI{b))
send b**EB

11

