The Network Layer

Introduction
. functionality and service models

Theory

. link state and distance vector algorithms
. broadcast algorithms

. hierarchical routing

The Network Layer (cont)

Case Study: IP

. services

. packet formats, addressing

. routing protocols: RIP, OSPF, BGP
. ICMP

. IPV6

Case Study: ATM
. services

. cell formats

. VP'sand VC's

Routers and Switches
how they work

Readings
Tannenbaum: 5.1, 5.2, 5.4-5.7
Kurose Ross: ch 4

———————
AEkllcatdan
SICdCL
krunyma =
Habe
'
cdaca ll '|l;||- —
e — appllcatlar
A phceton pr':,'sh:all |
2ackxt
EHEH N]
Srar speart
ranAp et
ankwrz h
nchererk
lutn link
data link
ahyslczl
| yEnz=-l '_

Network Layer: Introduction

Network layer: a network-wide concern
transport layer: between two hosts

data link layer: between two physically connected
hosts, routers

network layer: involves each and every router, host,
gateway in the network

Network Layer Service: Virtual Circuit

Virtual: looks like a circuit but isn't
generally associated with connection-oriented service
all packets within connection follow same route

At connection establishment time:

connection setup packet flows from sender to
receiver

routing tables updated at intermediate nodes to
reflect new VC

key issue: per-connection state at router

fits well with QoS guarantees: reserve resources
and/or accept/reject call based on resources at this
router

Analogy: telephone network

Network Layer Service: datagrams

no notion of connection in network layer

no routes set up at connection establishment
time - each packet in "connection" may follow
different path

no guarantee of reliable, or in-order delivery
advantages:
no connection state in routers

robust with respect to link failures
recovery at end-systems (transport level)

Burning qu estion: to VC or not to VC?

Answer: support both, offering different service
models:
best effort service: datagrams

service with performance guarantees: QOS

internal structure of B

routing table

[network 1ayer switching!routing |
Y F Y

A-B BC B-D
data|link dgta link data link
A-E B B-D _

physical pHysical physical

ry

10

The routing function

A network-layer packet contains:

transport layer packet (port, seq, ack, data,
checksum, etc)

addressing info (e.g., source, dest. address or VC
identifier)

other fields (e.g., version, length, time-to-live)

Router/switch actions simple on packet
receipt:

look up packet identifier (dest. address or VC id) in
routing table and forward on appropriate out-going
link (or upwards if at destination)

11

Routing Table: issues

Key question: how are routing tables
determined/updated?

who determines table entries?

what info used in determining table entries?
when do routing table entries change?
where is routing info stored?

how to control table size?

why are routing tables determined a particular way.

What is the theoretical basis?

Answer these and we are done!

12

Routing issues:

scalability: must be able to support large
numbers of hosts, routers, networks

adapt to changes in topology or significant
changes in traffic, quickly and efficiently

self-healing: little or not human intervention
route selection may depend on different
criteria

performance: "choose route with smallest
delay"

policy: "choose a route that doesn't cross a
government network" (equivalently: "let no
non-government traffic cross this network™)

Classification of Routing
Algorithms

Centralized versus decentralized

centralized: central site computes and distributed
routes (equivalently: information for computing routes
known globally, each router makes same
computation)

decentralized: each router sees only local
information (itself and physically-connected
neighbors) and computes routes on this basis

pros and cons?

14

Classification (cont)

Static versus adaptive

static: routing tables change very slowly, often in
response to human intervention

dynamic: routing tables change as network traffic or
topology change

pros and cons?

Two basic approaches adopted in practice:

link-state routing: centralized, dynamic (periodically
run)

distance vector: distributed, dynamic (in direct
response to changes)

Link-state routing

each node knows network topology and cost of each
link
quasi-centralized: each router periodically broadcasts costs
of attached links

cost may reflect
gueueing delay on link
link bandwidth
all links with equal cost: shortest path routes
used in Internet OSPF, ISO IS-IS, DECnet, "new"
(1980) ARPAnet routing algorithm
Goal: find least cost path from one node (source) to all
other nodes

Dijkstra's shortest path algorithm

Dijkstra's Shortest Path Algorithm:
Definitions

Define:
c(i,)): cost of link from i-to-j. c(i,j) = infty if i,j not
directly connected. We will assume c(i,j) equals c(j,i)
but not always true in practice

D(v): cost of currently known least cost path from
source, A, to node v.

p(v): previous node (neighbor of v) along current
shortest path from source to v

N: set of nodes whose shortest path from A is
definitively known

Iterative: after k iterations, know paths to k "closest"
(path cost) to A

17

Dijkstra's algorithm: Statement

Initialization:

N = {A}

for all nodes v

if v adjacent to A then D(v) = c(A,v)
else D(v) = infty

Loop:

find w not in N such that D(w) is a minimum

addwto N

update D(v) for all v not in N:
D(v) <- min(D(v), D(w) + c(w,V))

/* new cost to v is either old cost to v or known shortest

path cost to w plus cost from w to v */

until all nodes in N

18

19

example: in step 1: D(C) = D(D)+c(D,C)
1+ 3

for each column, last entry gives immediate neighbor
on least cost path to/from A, and cost to that node

worst case running time: O(N"2) 2

Distance vector routing

Asynchronous, iterative, distributed
computation:

much more fun!

at each step:

receive info from neighbor or notice change in
local link cost

compute
possibly send new info to adjacent neighbors

Computation/communication between network
layer entities!

cost to dest. via

_DEQ|A B D
o A |1 14 5
‘§B 7 8 5
= C |6 9 4
2 D |4 11 2

Distance table:

per-node table recording cost to all other nodes via
each of its neighbors
De(A,B) gives minimum cost from E to A given that
first node on path is B

DEe(A,B) = c¢(E,B) + min DB(A,*)

minDE(A,*) gives E's minimum cost to A

routing table derived from distance table
example: DE(A,B) = 14 (note: not 15!)
example: De(C,D) = 4, DE(C,A) =6

Distance vector algorithm

based on Bellman-Ford algorithm

used in many routing protocols: Internet BGP, ISO
IDRP, Novell IPX, original ARPAnet

Algorithm (at node X):

Initialization: for all adjacent nodes v:

D(*,v) = infty

D(v,v) = c(X,v)

send shortest path cost to each destination to neighbors
Loop:

execute distributed topology update algorithm

forever

23

Update Algorithm at Node X:

1. wait (until 1 see a link cost change to neighbor Y
or until receive update from neighbor W)
2. if (c(X,Y) changes by delta) {
/* change my cost to my neighbor Y */
change all column-Y entries in distance table by delta
if this changes my least cost path to Z
send update wrt Z, Dx(Z,*) , to all neighbors

}

3. if (update received from W wrt Z) {
[* shortest path from W to some Z has changed */

Dx(Z,W) = c(X,W) + Dw(Z,*) }
if this changes my least cost path to Z
send update wrt Z, Dx(Z,*) , to all neighbors "

Distance Vector Routing: Example

25

Dx| Y Z Dx| Y Z Dx| Y Z
Y | 2 infty Y Y

Z linfty 7 Z Z

Dy X Z Dy X z Dy X z
X1 2 infty

Z linfty 1 Z Z

Dz| X Y Dz| X Y Dz| X Y
X |7 infty X X

Y linfty 1 Y Y

26

If link XY fails, set ¢(X,Y) to infty and run
topology update algorithm

example (next page)
good news travels fast, bad news travels slow

looping:

inconsistent routing tables: to get to A, D routes
through E, but E routes through D

loops eventually disappear (after enough

iterations)

loops result in performance degradation, out-of-

order delivery

27

initially

step 0
step 1
step 2
step 3
stap 4
step o
step 6

step T

Tahle entres below shav shortest pat
cost and next node to A

I:l Indlcates new shortest path cost

'y indicates direction of update

‘\/‘*indicataslonp
node B nodeC nodeD nodeE
6C oD 3E 1A
6C 5D e »-[50]
o
6C 5D -ﬁ[‘-bﬁo
r"'
B E‘HI‘*IE
‘“». “«
IE\ & IE\
“’/
u/
TA 8B Af

Distance Vector Routing: Solving the

Looping Problem

Count to infinity problem: loops will exist in tables until

table values "count up" to cost of alternate route

Split Horizon Algorithm:

rule: if A routes traffic to Z via B then A tells B its
distance to Z is infinity

example: B will never route its traffic to Z via A

does not solve the count to infinity problem (why)?

¥«

29

Maore problems: Oscillations

A reasonable scenario
cost of link depends on amount of traffic carried
nodes exchange link costs every T

suppose:
A is destination for all traffic
B,D send 1 unit of traffic to A
C sends e units of traffic (e<<1)to A

Entire network may "oscillate"

Possible solutions:
avoid periodic exchange (randomization)
don't let link costs be increasing functions of load

30

Distance Vector —G, O+

- - IN‘@)/e' initial
Oscillations i e
&
Z2+e w B andC
B s ® oo
N@/o' path to A

oz o e
@ 0 0/ gre.lgegt

%45 z:::'le:o A
®
2re A NJ B, C
dD
1 Zre.ltect

Fire bett
h\@)/o' path to A

31

Comparison of LS and DV algorithms

Message complexity:

"LS is better": DV requires iteration with msg exchange
at each iteration

"DV is better": if link changes don't affect shortest cost
path, no msg exchange

Robustness: what happens if router fails, misbehaves or is
sabotaged?

LS could :
report incorrect distance to connected neighbors

corrupt/lose any LS broadcast msgs passing through
report incorrect neighbor

DV could:

advertise incorrect shortest path costs to any/all destinations (causeg
ARPAnet crash: "l have zero cost to everyone")

Comparison of LS and DV (cont)

Speed of convergence

DV:
may iterate many times while converging
loops, count-to-infinity, oscillations

cannot propagate new info until recomputes its own
routes

LS:
requires 1 broadcast per node per recomputation
can suffer from oscillations

both have strengths and weakness
one or the other used in almost every network

33

2nd Try (at LS Broadcast Distribution)

Each router puts a sequence number on its
LSP's
upon receiving LSP(R) from R
if (seq # > seq # of stored copy) of LSP(R)

then store LSP(R), update LS info for R, and
flood LSP(R)

else ignore duplicate

How can this protocol fail?

34

