Multimedia Networking

0 Application classes
0 streamed stored audio/video
0 one-to-many (multicast) streaming of real-time a/v
0 real-time interactive audio/video
0 Typical application issues
0 packet jitter
0 packet loss / recovery
01 Internet protocols for multimedia
o RTSP
0 RTP/RTCP
0 H.323

0 Text: Kurose-Ross, Chapter 6

Example Multimedia Apps

0 Streamed stored audio/video

0 movies, CS5-653 taped lectures (available on MANIC)
0 One-to-many streaming

0 News broadcasts, popular movies

0 Real-Time Interactive
0 IP telephony, teleconference, distributed gaming

Multimedia terminology

[l Multimedia session: a session that contains
several media types
0 e.g., a movie containing both audio & video
1 Continuous-media session: a session whose
information must be transmitted "continually”
0 e.g., audio, video, but not text (unless ticker-tape)
0 Streaming: application usage of data during its
transmission

Data stream ———>

B
! f

Playback pt Rev pt

Multimedia vs. Raw Data

0 Multimedia 0 Raw Data
0 e.g., Audio/Video 0 e.g., FTP, web page, telnet
0 Tolerates some packet 0 Lost packets must be
loss recovered
0 Packets have timed 0 Timing: faster delivery
playout regmts always preferred

Why not just use TCP for multimedia traffic?

Jitter

01 The Internet makes no guarantees about time of
delivery of a packet

0 Consider an IP telephony session:

% | Hi Thdre, Whadlt's up? |
Speaker

Listener %
Ire, Wittsaup? |

v

Time

Jitter (cont'd)

0 A packet pair's jitter is the difference between
the transmission time gap and the receive time gap

Sender:

Receiver:

0 Desired time-gap: S;,; - S; Received time-gap: R,; - R;
0 Jitter between packets i and i+1: (Ri,; - R) - (Si.1 - S))

Buffering: A Remedy to Jitter

0 Delay playout of received packet i until time S; + C
(C is some constant)

0 How to choose value for C?
0 Bigger jitter — need bigger C

0 Small C: more likely that R;> S, + C « missed deadline
0 BigC:
* requires more packets to be buffered
+ increased delay prior to playout
0 Appllca‘rlon timing regmts might limit C:
+ Interactive apps (IP telephony) can't impose large playout
delays (e.g., the international call effect)
* non-interactive: more tolerant of delays, but still not
infinite...

Adaptive Playout

0 For some applications, the playout delay need not
be fixed

0 e.g., [Ramjee 1994] / p. 430 in Kurose-Ross
0 Speech has talk-spurts w/ large periods of silence
0 Can make small variations in length of silence periods w/o
user noticing
0 Can re-adjust playout delay in between spurts to current
network conditions

Packet Loss / Recovery

0 Problem: Internet might lose / excessively delay
packets making them unusable for the session

1 1 1 1
arrival time: Pkt i 1 I Pkt i+l | Pkt i+3 1
o i [
I I | I
app deadline: i i+1 i+2 i+3
usage status: ..., i used, i+1 late, i+2 lost, i+3 used, ...

1 Solution step 1: Design app to tolerate some loss

1 Solution step 2: Design techniques to recover
some lost packets within application’s time limits

Applications that folerate some loss

0 Techniques are medium-specific and influence the
coding strategy used (beyond scope of course)
0 Video: e.g., MPEG
0 Audio: e.g., GSM, 6.729, 6.723, replacing missing pkts w/
white-noise, etc.
0 Note: loss tolerance is a secondary issue in
multimedia coding design

O Primary issue: compression

Reducing loss w/in time bounds

1 Problem: packets must be recovered prior to
application deadline
0 Solution 1: extend deadline, buffer @ rcvr, use
ARQ
0 Recall: unacceptable for many apps (e.g., interactive)
0 Solution 2: Forward Error Correction (FEC)
0 Send "repair"” before a loss is reported
0 Simplest FEC: tfransmit redundant copies

sender: [Pkti] [pkri| [Pktist| [PRriet] [Prris2] [Pktiv2]
X

VoV N % X
Receiver: X [Pkti| [Pkt i+t | i+2 lost

duplicate

More advanced FEC techniques

0 FEC often used at the bit-level to repair
corrupt/missing bits (i.e., in the data-link layer)

FEC
header data bits

0 Here, we will consider using FEC at the packet
layer (special repair packets):

|Datat| [Data2| [data3| [FEC1| [FEC2]

A Simple XOR code

0 For low packet loss rates (e.g. 5%), sending
duplicates is expensive (wastes bandwidth)

0 XOR code

0 XOR a group of data pkts together to produce repair pkt
0 Transmit data + XOR: can recover 1 lost pkt

[10101 | [[11100 | (7 [00111 | [[11000 | _, | 10110 |
)
X

[10101 | [0 [11100]| [[11000 | [] [1010] —, [oo111 |

Reed-Solomon Codes

0 Based on simple linear algebra

0 can solve for n unknowns with n equations

0 each data pkt represents a value

0 Sender and receiver know which “equation” is in which pkt
(i.e., information in header)

0 Revr can reconstruct n data pkts from any set of n data +
repair pkts

0 Inother words, send n data pkts + k repair packets, then
if no more than any k pkts are lost, then all data can be
recovered

O In practice

0 To reduce computation, linear algebra is performed over
fields that differ from the usual O

Reed Solomon Example over [

Pkt 1:

Pkt 2:
Pkt 3:
Pkt 4:
Pkt 5: 2 Datal +

Datal

Datal

Data2

Data3

+ Data2 + 2 Data3

Data2 + 3 Data3

0 Pkts 1,2,3 are data (Datal, Data2, and Data3)
01 Pkts 4,5 are linear combos of data

0 Assume 1-5 fransmitted, pkts 1 & 3 are lost:
0 Datal = (2 * Pkt 5 - 3 * Pkt 4 + Pkt 2)

0 Data? = Pkt 2

0 Data3 = (2 * Pkt 4 - Pkt 5 - Pkt 2)

Using FEC for continuous-media

datal|[D2 ||D3 ||FECt|[F2 ||D1I ...
Sonder: LBlocki || bk i || bIki [[blki [[blki]]blk i+t
X \ x ¥ X X
Revr: D1 % D3 ||F1 F2 D1
blk i biki||bki| |bikil [pKist] *°°
Revr App: blki| blki | blki

0 Divide data pkts into blocks
0 Send FEC repair pkts after corresponding data block

0 Rcvr decodes and supplies data to app before block i
deadline

Block i needed
by app

FEC via variable encodings

0 Packet contents:
0 high quality version of frame k
0 low quality version of frame k-c (c is a constant)

0 If packet i containing high quality frame k is lost, then
can use packet i+c with low quality frame k in place

| i | low: k-c | high: k |
| i+1||ow: k-c+1|high: k+1 |

| i+2||ow: k-c+2| high: k+2 |

FEC tradeoff

0 FEC reduces channel efficiency:
0 Available Bandwidth: B
0 Fraction of pkts that are FEC: f
0 Max data-rate (barring pkt loss): B (1-f)

0 Need to be careful how much FEC is used!!!

Bursty Loss:

0 Many codecs can recover from short (1 or 2

packet) loss outages

0 Bursty loss (loss of many pkts in a row) creates
long outages: quality deterioration more noticeab

0 FEC provides less benefit in a bursty loss scenario

(e.g., consider 30% loss in bursts of 3)

o [0z o5 [|[F2a] [oret |

Too much FEC

Too little FEC

Interleaving

[To reduce effects of burstiness, reorder pkt

transmissions

Sender
schedule

[p1|[p4][p7|[D2][05]| D8][D3]| D6 |

Arrival
schedule

Playback
schedule

=

0 Drawback: induces buffering and playout delay

10

Multimedia Internet Protocols

0 We'll look at 3:
0 RTP/RTCP: transport layer
0 RTSP: session layer for streaming media applications
0 H.323: session layer for conferencing applications

RTSP H.323
TCP|UDP|RTP/RTCP | TCP
U DP/mulTicas’r

RTP/RTCP [RFC 1889]

0 Session data sent via RTP (Real-time Transfer Protocol)

0 RTP components / support:

0 sequence # and timestamps

0 unique source/session ID (SSRC or CSRC)

O encryption

0 payload type info (codec)

0 Rcvr/Sender session status transmitted via RTCP
(Real-time Transfer Control Protocol)

0 last sequence # rcvd from various senders
observed loss rates from various senders
observed jitter info from various senders
member information (canonical hame, e-mail, etc.)
control algorithm (limits RTCP transmission rate)

O o o o

11

RTP/RTCP details

0 All of a session's RTP/RTCP packets are sent to
the same multicast group (by all participants)
0 All RTP pkts sent to some even-numbered port, 2p
0 All RTCP pkts sent to port 2p+1
0 Only data senders send RTP packets

0 All participants (senders/rcvrs) send RTCP
packets

RTP header

Payload | Sequence | Timestamp | Synchronization Misc

Type # Source Identifier

0 Why do most (all) multimedia apps require
0 sequence #?
U timestamp?
0 (unique) Sync Source ID?
0 Why should every pkt carry the 7-bit payload
type?
0 Why not just when sender initiates session?
0 Transmission rate: application specific (no
congestion control specified in RTP)

12

RTCP packets

0 There are several types of RTCP packets

SR: sender report - transmission & reception stats

RR: receiver report - reception stats

SDES: Source description items

BYE: end-of-participation message

APP: application-specific functions

0 Typically, several RTCP packets of different types
are fransmitted w/in a single UDP packet

O 0o o o o

What RTCP provides

Info to detect colliding Synch source ID's
Contact info (e-mail, true name) of participants
Info to count # of session participants
Reception quality of all participants

O 0o o o

O

How does RTCP avoid creating congestion if all
participants send RTCP packets?
0 consider a broadcast TV transmission

13

RTCP congestion control

[l A session's aggregate RTCP bandwidth usage should be
5% of the session's RTP bandwidth
0 75% of the RTCP bandwidth goes to the receivers
0 25% goes to the senders
0 Teender = # senders * avg RTCP pkt size
.25 * .05 * RTP bandwidth
0 T = # receivers * avg RTCP pkt size
.25 * .05 * RTP bandwidth

Send at (.5 + rand(0,1)) * T : why?
How does each member know # of senders, # rcvrs?

RTCP reconsideration

0 Goal: prevent RTCP bandwidth explosion if
everybody joins at once
0 Receivers who initially join will count small # of session
members
0 Solution when first joining:
1. Compute T, and wait random time interval
2. At end of interval, reassess # of members
3. If # of members increased, compute anew T
4. If T' < T, send immediately
5. If T'>= T, wait an additional T', go to step 2

0 Other times, use normal wait period

14

RTSP [RFC 2326]

0 RTSP: out-of-band protocol used to control
transmission of a media-stream

0 VCR-like functionality (pause/resume, FF, rewind,
reposition, etc.)

Web hTfp get Web HTTP
Browser semppr‘esen'ra'rion description | gopyer protocol
ACK
play
I ACK
Media Media RTSP
media stream
Player |[pause Server protocol
ACK
teardown
ACK r— N,

H.323

[0 A standard for real-time audio / video
teleconferncing on the Internet

01 Network Components:
0 end points: end-host H.323-compliant app

0 gateways: interface between H.323-compliant
communication and prior technology (e.g. phone network)

0 gatekeepers: provide services at gateway (e.g., address
translation, billing, authorization, etc.)

Audio Apps | Video Apps “ Gateway | | System Control |

A

6 RAS Call Call
6.722| H.263 Channel Signaling || Control
6.729 H.225 Channel || Channel
etc. Q931 || H245

RTP / RTCP

UDP | Tt |

15

H.323 cont'd

0 H.225: notifies gatekeepers of session initiation

0 Q.931: signalling protocol for establishing and
terminating calls

0 H.245: out-of-band protocol negotiates the
audio/video codecs used during a session (TCP)

G711 | H.261 RAS Call Call

G.722| H.263 Channel Signalin Control
6.729| etc. H.225 C qnne? Channel
etc. Q931 H.245

RTP / RTCP

+-H.323 >

