IntServ / DiffServ

0 Integrated Services (IntServ)
0 Resource Reservation Protocol: RSVP
0 Differentiated Services (DiffServ)
0 Assured Forwarding
0 Expedited Forwarding
0 Comparison: AF vs. EF

0 Reading:Kurose-Ross Chapter 6.7-6.9

QoS (Quality of Service) in the
Internet

01 The Internet Protocol (IP) does not guarantee
QoS to applications

0 Idea: Re-engineer IP to provide quality of service
0 Let routers distinguish classes of flows
0 Q: What is the model for a class?

0 Solution must consider:

the needs of (some/most/all) applications

the add'| state that routers must maintain

the add'l communication overhead (add'l packets or bits)
of flows or classes a router must handle

O o o o

IntServ vs, DiffServ

IntServ (1992) DiffServ (1997)
0 per-flow reservations 0 packet classification
O i.e., heeds RSVP
0 flows provide traffic
characterization

0 "heavy” state: per-flow 0 edge & core routers

O edge: "heavy" state
0 core: "light" state

0 “strong” guarantees, e.g., 0 “weak" guarantees, e.g.,
0 conformance to leaky- 0 Flow A gets better service
bucket characterization than Flow B
[RFC 2215]
0 bound on max e2e delay
[RFC 2212]

Integrated Services (1992)

As described in [RFC 1633] from 1994:

0 Philosophy: "guarantees cannot be achieved
without reservations”

01 Four components to IntServ architecture:
0 packet scheduler
0 classifier
0 admission control routine
0 reservation setup protocol

IntServ Components

All components implemented at all routers!

0 Packet Scheduler
0 Manages forwarding of different streams
0 Required resources: sets of queues, timers
0 Example: Implementation of Weighted Fair Queuing
(WFQ)
0 Classifier
0 Maps packets to a class
0 Packets in same class treated similarly
0 Examples:
+ per-flow class
+ video-packet class

IntServ Components (cont'd)

0 Admission Controller
0 Determines whether or not to admit a new flow
0 Q: why would a flow be rejected?
0 Requirements:
+ Knowledge of available resources at router
+ (conservative) model of flow's resource consumption
- eg., leaky bucket
0 The hard part: getting apps to characterize their flows

0 Reservation Setup Protocol
0 Sets up and maintains (distributed) flows' network
resource usage
* "negotiates” between admission controllers at routers
- establishes active classifiers at routers
U e.g., RSVP protocol

RSVP protocol

0 The commonly suggested reservation setup protocol

0 Designed for multicast sessions (unicast is a special case)

0 Receiver-oriented: receivers initiate requests

0 allows for receiver heterogeneity

[0 Reservation styles allow merging of reservations (i.e., use
the style that's appropriate for the app)

01 Uses soft-state: reservations need to be refreshed or they
expire. Why soft-state?

0 Dynamic: able to reconfigure reservation rather than
perform complete teardown / setup

RSVP messaging

B RSVP state info

R,

0 Rcvrs make requests for reservations

0 Sufficient resources: Router reserves per outgoing
interface (i.e., link) and forwards request upstream

0 Insufficient: send ResvError message downstream

0 Path messages: from sender toward rcvr so that routers
know where to forward receiver requests.

0 Why not just head toward sender using Internet routing
tables?

RSVP Reservation Styles

0 Fixed-Filter: Allocation per sender indicated

0 Sample application: multimedia (e.g., send audio (S;) and
video (S,) at same time)

S;: 10
S, 2

S, 7 requests

RSVP Reservation Styles

0 Shared-Explicit: Allocation shared by list of senders
0 Sample application: multimedia (e.g., debate w/ 2 speakers)

S;: 10
S,: 10

.5 requests

RSVP Reservation Styles

0 Wildcard-Filter: Allocation shared by all senders

0 Sample application: town meeting (one sender, but not
clear who the speakers might be)

R,| 10
10
S 10
RZ 5 requests
52 10 7
7
R;

Style Summary

0 Fixed-Filter: reservation per sender
0 Senders don't "share” bandwidth
0 Dynamic event: rcvr wants to change a sender allocation
01 Shared-Explicit: reservation per list-of-senders
0 Fixed set of senders “share" bandwidth
0 Dynamic event: rcvr wants to add/remove sender or change
group allocation
01 Wildcard-Filter: no sender specified w/ reservation
0 Any sender can "share” bandwidth

0 Dynamic event: new sender begins transmitting, rcvr wants
to increase its receiving allocation

IntServ: Problems

0 Reservation protocols and structure complicated

0 lots of message passing
0 coordination problems

0 All routers maintain state
0 state maintenance requires additional processing /
memory resources
0 Lots of flows traverse core (backbone) routers
+ Lots of state: need more memory
+ Lots of RSVP msgs to process: slows transfer speeds
- Scheduler and Classifier have too much to deal with

DiffServ

0 Q: What if IntServ is oo complex/costly to
deploy?

0 A: Build a simpler scheme that takes into account

0 many apps have simple requirements (e.g., need fixed
bandwidth, low jitter)
0 App can't/doesn't always conform to/provide "strict”
model of resource usage
0 different levels of functionality can be placed at
different "types” of routers
*+ network edge
* network core

Differentiated Services

S ol
router

@ core
router

host

0 Idea: keep the architecture simple within the core.
0 higher complexity permitted at edge routers
0 Just provide service differences, no explicit
guarantees
0 i.e., high and low priority classes (extra $$$ for high)

DiffServ Architecture

¢S
2 6’/70

C\oﬁe\ €p

y —+[ricn data | >

01 Edge router
0 classify packet and mark packet
0 shape flow (control entry rate into core, drop pkts, change
mark, etc.)
0 Core router
0 handle packet based on its mark
0 possibly remark at peering points
O Maintain Per-Hops Behavior (PHB): the desired service
(e.g. rate) provided to a class at a given hop (router)

2 Competing PHBs

0 Expedited Forwarding (EF) [RFC 2598]

0 Router must support classes' configured rates
0 EF class allocated fixed portion of router processing per
unit time, e.g.,
+ Class-based queueing (CBQ) w/ priority to EF queue
+ Weighted Fair Queuing
0 Assured Forwarding (AF) [RFC 2597]
0 N classes (current standard: N=4)

O M possible drop preferences w/in class (current
standard: M=3)

0 Each classes’ traffic handled separately
0 Packet drop "likelihood" increases w/ drop preference

PHB Specs Omit...

0 EF and AF PHBs do not specify mechanism, e.g.,
not specified:
0 edge classification, shaping or marking policy
O core router queuing mechansim
0 ranges of rates, relative class/preference service ratios,
efc.
0 Why are these details omitted?

0 Allow flexibility - as long as specified requirements are
met.

0 DiffServ is a new idea - still unclear on which mechanism
is best - so standardize later

0 Which is better, EF or AF?

Comparing PHB Models [Sahu]

0 How does isolating traffic (EF) compare with preferential
treatment (AF w/ preferences)?

0 Measures: 0 Queue models:
7 expected loss rate 0 EF: separate queues per class.
0 expected delays High priority queue always

0 Regm't: overall serviced first (when non-empty)

buffer / bandwidth 0 AF: one queue w/ threshold for
accepting high drop-preference

fixed pkts
high priority
L —
traffic hlgh & low
priority ——p
low priority T] traffic
traffic — >
E— high drop-preference threshold

Intuition
high priority
L —
traffic O hlgh & low
priority ——p
low priority T] traffic
traffic —»
—_— high drop-preference threshold
0 Which is

0 better for reducing high-priority delay?
0 for high-priority loss?

0 How should buffer be allocated in the 2 models to
make a fair comparison?
0 EF: low priority gets its own buffer
0 AF: low priority must share its buffer with high

10

EF vs. AF Comparison

01 Choose buffer partitions and threshold such that
low-priority traffic sees similar loss rates in two
systems

0 Examine impact on high priority traffic

0 Main Results for high priority traffic:

0 AF router needs to process 30-70% faster than an EF
router to maintain same delays (function of partition
point and threshold location)

0 EF router needs only 15% add'l buffer to yield same loss
rates to low priority traffic as AF

DiffServ Open Issues

0 How to decide “how much” to reserve
0 How to do DiffServ for multicast

0 Much more complicated

0 Multicast reservation issues significantly complicated
IntServ. What about DiffServ?

11

Summary: Internet Multimedia

0 Internet design:
0 flexible
0 easy to extend
0 difficult to support time-bounded applications
0 Approach #1: Build on a best-effort network
0 adaptive applications (quality vs. available bandwidth)
0 deal with loss and jitter (e.g., RTP/RTCP)
0 Approach #2: Modify (extend) IP design
0 IntServ: guarantee QoS, but takes lots of state

0 DiffServ: create high and low priority customers - give
more to high

12

