Presentation Services

0 need for a presentation services

0 ASN.1

o declaring data type
o encoding data types

0 implementation issues
0 reading: Tannenbaum 7.3.2

Presentation Services: Motivation

Question: suppose we could copy reliably from one
computer's memory to another. Would this “solve”
communication problem?

Answer: ?

Crux of problem:
0 deal with meaning of information, not representation
0 different computers, OS, compilers have different
conventions for representing data
o architecture: big endian versus little endian
o floating point format
o data type size: 16, 32, 64 bit int
o different size, layout of data structures

Solving the representation problem

? ?
" " "groovy"
roov:
- %? groowys %’______———v? %-_,

grandma aging 60's hippie 90's teenager

o have sender encode to receiver’s format
o have receiver decode from sender’s format

o0 have machine-, OS-, language-independent method for
describing data structures

o host translates to/from universal description language from/to own
format

O pros and cons?

7 it is pleasin 5 it i i -
presentation P g presentation itis pleasmgl presentation
service service service

"catls - r - -
' pajamas" groovy’ awesome
: 1
1
! i l ' % 1
grandma aging 60’s hippie 90's teenager

ASN.1: Abstract Syntax Notation 1

ISO standard (one still meaningful)

abstract syntax: “language” for describing data
structures

0 data description language, not programming
language

o defines universal data types

o allows user-defined data types

basic encoding rules:

O convert abstract syntax specification of data structure
into series of bytes (for transmission)

ASN.1: a pictorial view

lastname::= OCTETSTRING {Weight,25ﬁ} .
weight:;:=INTEGER {lastname," Smith"}

module of data tye instances of data of
declarations written in types defined in
ANS.1 sbtract syntax "module"

| basic encoding rules (BER)|

octets of
encoded data

(o] el 3 [~ Z M ol

ASN.1: Universal Types

predefined types with given tag value

Tag Type Commend
BOOLEAN value is true or false
INTEGER can be arbitrarily big
BITSTRING list of one or more bits
OCTET STRING list of one or more bytes

NULL no value

OBJECT refers to an “object”, e.g.
IDENTIFIER protocol number

REAL floating point

Example declarations: think of ::= as defining new data
type in terms of universal data type

Married ::= BOOLEAN
SSN :: = | NTEGER
Lnanme ::= OCTETSTRI NG
Sal ary ::= REAL

| PAddress ::= OCTETSTRI NG (SI ZE 4)

ASN.1 Syntax: constructors

ASN.1 defines constructor types for building more
complex data types of “simpler” data types:

Tag Type Comments
16 SEQUENCE ordered list, each element an ASN.1 type

17 SET same as sequence but unordered
11 CHOISE a type taken from specified list

example of constructed data type:

student Record ::= SEQUENCE ({
Lname OCTETSTRI NG
Fname OCTETSTRI NG,
Mhane OCTETSTRI NG,
Marri ed BOOLEAN DEFAULT FALSE,
SSN | NTEGER

}

ASN.1 Encoding Example

The ASN.1 definition:
At t endee ::= SEQUENCE ({

nane OCTET STRI NG
pai d BOCLEAN }

The data {*Smith”, T} would be encoded:

[o0710000] [o0001010] [oogpe100| oooootot] [s] [[i][t][H] [oogo00oq] [o0000001] [11111111]

sequence 10 bytes OQCTET 5 bytes BOOLEAN 1 bhyte true

long | STRING long . long ll

Note nesting of TLV structure in above example

ASN.1: But how do | use jt?

Normal people don’t want to write encoding/decoding routines!

ASN.1 “compilers” take ASN.1 abstract syntax module and
produce

0 C data type definitions (e.g., typedef’s) that user can #include to create
data structures having these types

o library of C-callable rouitnes (e.g., one for each data type) to
encode/decode each typedef to/from TLV encoding

type definitions e C-callable

specified in ASN.1to C »| routines to >
ASN.1 abstract “compiler” encodeldecode
syntax data structures | | Application

program
\ C datatype | 4—7p
declarations ||

‘ lower level protocols ¥

External Data Representation:
XDR

0 developed by SUN (RFC 1014)
0 similar to ASN.1 in power
0 the de facto standard for most client-server

applications
o underlies SUN RPC and NFS
o0 both stream oriented (TCP) and record oriented
(UDP)

0 XDR can be combined with remote procedure calls

o rpcgen compiler allows you to write rpc and encodes data in
XDR format

Presentation Services: closing thoughts

O presentation processing expensive:
o up to 90% processing time on ethernet/IP/TCP/presentation stack
o cost to encode array of int's 5-20 times more expensive than copy
o too heavyweight?

O interesting reading:
o John Larmouth's book "Understanding OSI" : chapter 8: ASN.1
o role of ASN.1 in next generation http

o Neufeld and Y. Yang, “An ASN.1 to C compiler,” IEEE Trans.
Software Engineering, Oct. 1990

o C. Huitema and A. Doghri, “Defining Faster Transfer Syntaxes for the
OSI Presentation Protocol,” ACM Computer Communication Rev,
Oct. 1989

o D.E. Comer, D.L. Stevens, Internetworking with TCP/IP, vol. 111,
Prentice Hall, 1994.

Network Application Programming

Introduction: issues

Sockets: programming and implementation
Other API’s:

- winsock

- java

- transport layer interface (TLI)

- Novell netware API
Reading: Tannenbaum, page 486-487, KR Chapter 2
ftp://gaia.cs.umass.edu/cs653/sock.ps

The Application Programming
Interface: API

- API: the programming model, application callable
services, interfaces, and abstractions provided by
the network (i.e., lower layers) to the application.

- does an API provide for:

- naming and service location: must application know
precise location (e.g., host address and port) of
service? Can services be requested by name? Can
servers registers services?

. connection management. must applications do low-
level handshaking required to setup/teardown
connection?

The API (continued)

Does an API provide for:

« message transfer

. application-selectable data transfer services: best-effort
versus reliable?

. message priorities?
- multi-site atomic actions?
. structured versus byte-stream communication?
- communication flexibility
- can application select and/or modify protocol
stacks (statically or dynamically)?
- Quality of Service specification
. can application specify QoS requirements to network?

The SOCKET API

- Introduced in 1981 BSD 4.1 UNIX

- a host-local, application created/owned, OS-
controlled interface into which application
process can both send and receive messages
to/from another (remote or local) application
process

— logical communication
Ig\i%rl ﬁpphccﬂmné g, cemmuni=an # pplication

.
m | = [
[socker & Asockst
operating =F
systern Top
P =
Dot Link :
- physical communication Data Link
P Physical
Host A Host A

N

The SOCKET API (cont)

- two sockets on separate hosts ~“connected"” by
OS socket management routines. Application
only sees local socket.

- sockets explicitly created, used, released by
applications

- based on client/server paradigm

- two types of transport service via socket API:
. unreliable datagram
. reliable, stream-oriented

- presentation, session layers missing in UNIX
networking (an application concern!).

Sockets: conceptual view

- each socket has separate send/receive
buffers, port id, parameters (application
gueryable and setable).

- socket operations implemented as system
calls into OS

- user/kernel boundary crossed: overhead

Sockets: conceptual view

T

USER msgsend() bind() msgsrecv() getsockopt() User
APP. | setsocketopt() space

| s
SOCKET
vl B

?
TRANSPORT '
LAYER —»‘ j

system

Connectionless Service

- datagram service: underlying transport protocols

do not guarantee delivery

- no explicit identification of who is server, who is

client

- if initiating contact with other side, need to

know
IP address

. port number of process waiting to be contacted.
- iIf waiting for contact from other side, need to

declare

. port number at which waiting for other side

SERVER

1.create transport
endpoint: socket()

2. assign transport

endpoint an address:

bind()

3. wait for pkt
to arrive: recvfrom()

4. send reply (if any):
sendto()

5. release transport
endpoint: close()

5.

CLIENT

. create transport

endpoint: socket()

. assign transport

endpoint address:
(optional) bind()

. determine address

of server

1%

<

. send msg: slendto()

wait for pkt
to arrive: recviromy()

|

6. Release transport

endpoint: close()

DNS: Internet Domain Name System

- adistributed database used by TCP/IP
applications to map to/from hostnames from/to
IP addresses

> Name servers .

- user-level library routines get host bynane() and
get host byaddr ess() contact local nameserver
via port 53

. name server returns IP address of requested
hostname

(_\ oot
- ngime
fati

O HEE

invole
pethortbynared) 1

Infernet

pot
nen e
T ar

DNS: non-local names

finding non-local names
- no single name server has complete info

- if local name server can't resolve address, contacts root
name server:
9 redundant root nameservers world-wide

each has addresses of names servers for all level-two name
servers (e.g., umass.edu, ibm.com)

contacted root server returns IP address of name server
resolver should contact

contacted level-two name server may itself return a pointer to
another name server

name resolution an iterative process of following name server
pointers

DNS protocol specifies packet formats for exchanges with DNS
servers

Assigning socket a network address:
bind()
- each socket must be associated with a local,
host-unique 16-bit port number.
- need to associate socket with globally unique
network address (host address and port)

. OS knows that incoming messages addressed to
this host address and port to be delivered
(demultiplexed to) to this socket

. areturn address for outgoing messages

Port number(s)
1-255
21
23
25

80

1-1023
1024 - 4999
5000 -

Port Numbers

comment
reserved for standard services
ftp service
telnet service
SMTP email
http daemon
available only to privileged users
usable by system and user processes
usable only by user processes

Connection-oriented service

SERVER CLIENT

create transport create transport

endpoint:socket () endpoint: socket ()
for incoming requests

assign trasnport
endpoint an address
(optional) :bi nd()

assign address
to transport endpoint:bi nd()

announce willing to

2 determine addr. of server
accept connections: | i st en()

. msg exchange *
block/wait for ‘andsynch ----------- » c_onnect to server
incoming conn. req.: via socket: connect ()
accept () (new socket le
created on return) ues v
reﬂ send msg: sendto()
wait for pkt:r ecvfrom() « l
. reply . .
send reply (if any):sendt o() == » wait for reply:r ecvf ron()
\
release transport release transport
endpoint: cl ose() endpoint: cl ose()

Connection-oriented service

- client/server handshaking:
. client must explicitly connect to server before
sending or receiving data
. client will not pass connect () until server accepts
client

. server must explicitly accept client before sending or
receiving data

. server will not pass accept () until client
connect()'s
- connection-oriented service: underlying
transport service is reliable, stream-oriented.

sockid = socket()

Typical server biLD
structure
listeni)
= accept()

create a child process, fork()
to handle communication
(provide service) to client

w‘
parent

child communications
sendtof), recvfrom()
with client and provides
service via newsockid

closelnewsockid)
and exit(}

Aside: other useful system calls and
routines

- cl ose(sockfd) will release a socket

- getsockopt () andsetsockopt () system
calls used to query/set socket options.

- 1octl () system call used to query/set
socket attributes, also network device
interface attributes.

1

Implementation: OS actions on sendto()

sendto() system call return from
causes interrupt system call
I R R USER SPACE
b, fnore data to send?
check high-water mark: wait until buffer G
enough space for user data? fi
gh sp SHACSTIEES IR SOCKET LAYER
copy data from user's
address space into socket
buffers (kernel space)
procedure call down to return from procedure
transport layer (e.g., tepsend(}) call to transport layer
to send data T
TRANSPORT LAYER

Windows Sockets

Based on BSD sockets:

0 BSD: “the de facto standard for TCP/IP Networking"
(quote from Winsock1.1 documentation)

0 supports stream(TCP)/datagram(UDP) model
0 API the same as what we have seen

A few differences/incompatibilities:

extensions for asynchronous programming

different error return codes: -1 not the error return code!
socket identifier different from file identifier

read(), write(), close() should not be used

O o o o O

use socket-specific equivalents instead

API: Summary

some API’'s provide only low-level interface to
transport services: socket, winsock, TLI

other API's provide higher-level services (e.g.,

transaction support, service advertising or request)
o makes building applications easier

sockets the de facto standard

FYI reading:
o winsock: http://www.sockets.com

o JAVA: http://java.sun.com
o Tutorial on sockets: http://manic.cs.umass.edu

