
Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Where we are in the course
• Discussed:

– Processes & Threads
– CPU Scheduling
– Synchronization & Deadlock

• Next up:
– Memory Management

• Yet to come:
– File Systems and I/O Storage
– Distributed Systems

1

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Memory Management
• Where is the executing process?

• How do we allow multiple processes to use main memory
simultaneously?

• What is an address and how is one interpreted?

2

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Background: Computer Architecture

• Program executable starts out on disk
• The OS loads the program into memory
• CPU fetches instructions and data from memory while executing

the program

3

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Memory Management: Terminology

• Segment: A chunk of memory assigned to a process.
• Physical Address: a real address in memory
• Virtual Address: an address relative to the start of a process's

address space.

4

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Where do addresses come from?
How do programs generate instruction and data addresses?
• Compile time: The compiler generates the exact physical location

in memory starting from some fixed starting position k. The OS
does nothing.

• Load time: Compiler generates an address, but at load time the
OS determines the process' starting position. Once the process
loads, it does not move in memory.

• Execution time: Compiler generates an address, and OS can place
it any where it wants in memory.

5

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Uniprogramming
• OS gets a fixed part of memory (highest memory in DOS).
• One process executes at a time.
• Process is always loaded starting at address 0.
• Process executes in a contiguous section of memory.
• Compiler can generate physical addresses.
• Maximum address = Memory Size - OS Size
• OS is protected from process by checking addresses used by

process.

6

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Uniprogramming

⇒Simple, but does not allow for overlap of I/O and computation.

7

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Multiple Programs Share Memory
Transparency:

– We want multiple processes to coexist in memory.
– No process should be aware that memory is shared.
– Processes should not care what physical portion of memory they are

assigned to.
Safety:

– Processes must not be able to corrupt each other.
– Processes must not be able to corrupt the OS.

Efficiency:
– Performance of CPU and memory should not be degraded badly due to

sharing.

8

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Relocation

• Put the OS in the highest memory.
• Assume at compile/link time that the process starts at 0 with a maximum

address = memory size - OS size.
• Load a process by allocating a contiguous segment of memory in which the

process fits.
• The first (smallest) physical address of the process is the base address and the

largest physical address the process can access is the limit address.

9

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Relocation
• Static Relocation:

– at load time, the OS adjusts the addresses in a process to reflect its position in
memory.

– Once a process is assigned a place in memory and starts executing it, the OS cannot
move it. (Why?)

• Dynamic Relocation:
– hardware adds relocation register (base) to virtual address to get a physical address;
– hardware compares address with limit register (address must be less than limit).
– If test fails, the processor takes an address trap and ignores the physical address.

10

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Dynamic Relocation
• Advantages:

– OS can easily move a process during execution.
– OS can allow a process to grow over time.
– Simple, fast hardware: two special registers, an add, and a compare.

• Disadvantages:
– Slows down hardware due to the add on every memory reference.
– Can't share memory (such as program text) between processes.
– Process is still limited to physical memory size.
– Degree of multiprogramming is very limited since all memory of all active

processes must fit in memory.
– Complicates memory management.

11

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Relocation: Properties
• Transparency: processes are largely unaware of sharing.

• Safety: each memory reference is checked.

• Efficiency: memory checks and virtual to physical address
translation are fast as they are done in hardware, BUT if a process
grows, it may have to be moved which is very slow.

12

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Memory Management: Memory Allocation

As processes enter the system, grow, and terminate, the OS must
keep track of which memory is available and utilized.

• Holes: pieces of free memory (shaded above in figure)
• Given a new process, the OS must decide which hole to use for

the process

13

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Memory Allocation Policies
• First-Fit: allocate the first one in the list in which the process fits.

The search can start with the first hole, or where the previous first-
fit search ended.

• Best-Fit: Allocate the smallest hole that is big enough to hold the
process. The OS must search the entire list or store the list sorted
by size hole list.

• Worst-Fit: Allocate the largest hole to the process. Again the OS
must search the entire list or keep the list sorted.

• Simulations show first-fit and best-fit usually yield better storage
utilization than worst-fit; first-fit is generally faster than best-fit.

14

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Fragmentation
• External Fragmentation

– Frequent loading and unloading programs causes free space to be broken
into little pieces

– External fragmentation exists when there is enough memory to fit a process
in memory, but the space is not contiguous

– 50-percent rule: Simulations show that for every 2N allocated blocks, N
blocks are lost due to fragmentation (i.e., 1/3 of memory space is wasted)

– We want an allocation policy that minimizes wasted space.
• Internal Fragmentation:

– Consider a process of size 8846 bytes and a block of size 8848 bytes
⇒ it is more efficient to allocate the process the entire 8848 block than it is to

keep track of 2 free bytes
– Internal fragmentation exists when memory internal to a partition that is

wasted

15

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Compaction

• How much memory is moved?
• How big a block is created?
• Any other choices?

16

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Swapping
• Roll out a process to disk, releasing all the memory it holds.
• When process becomes active again, the OS must reload it in

memory.
– With static relocation, the process must be put in the same position.
– With dynamic relocation, the OS finds a new position in memory for the

process and updates the relocation and limit registers.
• If swapping is part of the system, compaction is easy to add.
• How could or should swapping interact with CPU scheduling?

17

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Paging: Motivation & Features
90/10 rule: Processes spend 90% of their time accessing 10% of

their space in memory.
=> Keep only those parts of a process in memory that are actually

being used
• Pages greatly simplify the hole fitting problem
• The logical memory of the process is contiguous, but pages need

not be allocated contiguously in memory.
• By dividing memory into fixed size pages, we can eliminate

external fragmentation.
• Paging does not eliminate internal fragmentation (1/2 page per

process)

18

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Paging: Example
Mapping pages in logical mem to frames in physical memory

19

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Paging Hardware
• Problem: How do we find addresses when pages are not allocated

contiguously in memory?
• Virtual Address:

– Processes use a virtual (logical) address to name memory locations.
– Process generates contiguous, virtual addresses from 0 to size of the

process.
– The OS lays the process down on pages and the paging hardware translates

virtual addresses to actual physical addresses in memory.
– In paging, the virtual address identifies the page and the page offset.
– page table keeps track of the page frame in memory in which the page is

located.

20

