Data Centers and Cloud Computing

CS377 Special Topic

Lecture 17, page 1

Data Centers and Cloud Computing

- Intro. to Data centers
- Virtualization Basics
- Intro. to Cloud Computing
 Case Study: Amazon EC2

Data Centers

- Large server and storage farms
 - -1000s of servers
 - -Many TBs or PBs of data
- Used by
 - -Enterprises for server applications
 - -Internet companies
 - Some of the biggest DCs are owned by Google, Facebook, etc
- Used for
 - -Data processing
 - -Web sites

-Business apps

Google NETELIX iCloud amazon.com

Lecture 17, page 3

Inside a Data Center

- Giant warehouse filled with:
 - -Racks of servers
 - -Storage arrays
 - -Network switches
- Cooling infrastructure
- Power converters
- Backup generators

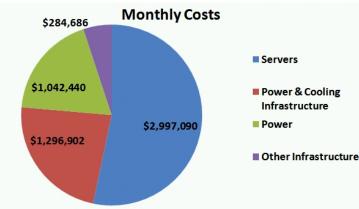
MGHPCC Data Center

Lecture 17, page 5

Modular Data Center

- Use shipping containers
- Each container filled with thousands of servers
- Can easily add new containers
 - -"Plug and play"
 - -Just add electricity
- Allows data center to be easily expanded
- Pre-assembled, cheaper

Data Center Challenges


- Resource management
 - -How to efficiently use server and storage resources?
 - -Many apps have variable, unpredictable workloads
 - -Want high performance and low cost
 - -Automated resource management
 - -Performance profiling and prediction
- Energy Efficiency
 - -Servers consume huge amounts of energy
 - -Want to be "green"

Lecture 17, page 7

Data Center Costs

• Running a data center is expensive

3yr server & 15 yr infrastructure amortization

http://perspectives.mvdirona.com/2008/11/28/ CostOfPowerInLargeScaleDataCenters.aspx

Economy of Scale

- Larger data centers can be cheaper to build and run than smaller ones
 - -Lower prices for buying equipment in bulk
 - -Cheaper energy rates
- Automation allows small number of sys admins to manage thousands of servers
- General trend is towards larger mega data centers -100,000s of servers

Lecture 17, page 9

Virtualization

- Separation of a service request from the underlying physical delivery of that service.
- Achieving virtual machine virtualization
 - CPU virtualization
 - Memory virtualization
 - Device and I/O virtualization

Virtualization Timeline

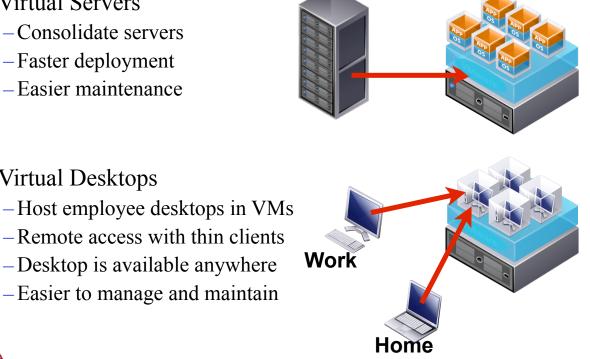
- The pioneer project
 - -1964, Started in IBM Cambridge Science Center, CP-40
- VMWare IA-32 virtual platform
 - -1999, with the company founded in the previous year
- First open source x86 hypervisor
 - 2003, Computer Laboratory, University of Cambridge, Xen
- First professional open source virtualization software -2007, VirtualBox

Lecture 17, page 11

Server Virtualization

- Allows a server to be "sliced" into Virtual Machines
- VM has own OS/applications
- Rapidly adjust resource allocation
- VM migration within a LAN

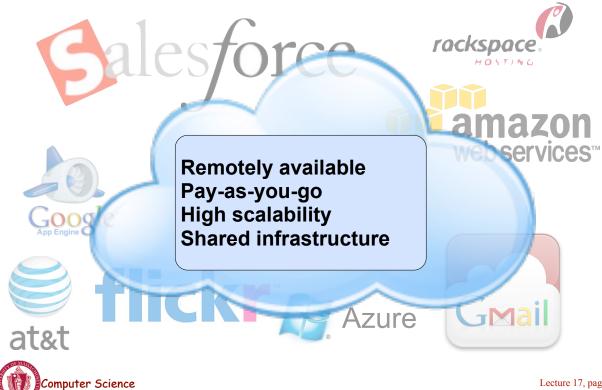
omputer Science


Virtualization in Data Centers

- Virtual Servers
 - -Consolidate servers
 - -Faster deployment
 - -Easier maintenance

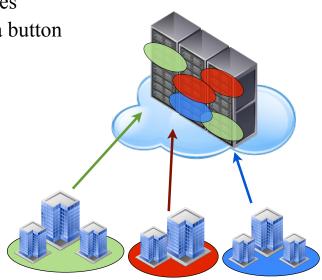
-Desktop is available anywhere

-Easier to manage and maintain


Virtual Desktops

Lecture 17, page 13

What is the cloud?



The Cloud Stack

Software as a Service Hosted applications Galesforce Gmail Managed by provider Office apps, CRM **Platform as a Service** Platform to let you run Azure your own apps Google **Provider handles** Software platforms scalability Infrastructure as a Service Raw infrastructure nazol Can do whatever you web services^m at&t want with it Servers & storage Lecture 17, page 15

IaaS: Amazon EC2

- Rents servers and storage to customers
 - -Uses virtualization to share each server for multiple customers
 - -Economy of scale lowers prices
 - -Can create VM with push of a button

Amazon Pricing

- EC2 Instances
 - Different instance types provides different CPU, RAM, storage and networking capacity.
 - On-demand, reserved and spot instances

	t1.micro	r3.4xlarge	r3.8xlarge
VCPUs	1	16	32
RAM	1GB	122GB	244GB
On-demand	\$0.013/hr	\$1.400/hr	\$2.800/hr
Spot	\$0.0031/hr	\$0.128/hr	\$0.256/hr

Storage \$0.10/GB per month

Bandwidth \$0.10 per GB

Computer Science

http://aws.amazon.com/ec2

Lecture 17, page 17

PaaS: Google App Engine

- Provides highly scalable execution platform
 - -Must write application to meet App Engine API
 - -App Engine will autoscale your application
 - -Strict requirements on application state
 - "Stateless" applications are much easier to scale
- Not based on virtualization
 - -Multiple users' threads running in same OS
 - -Allows google to quickly increase number of "worker threads" running each client's application
- Simple scalability, but limited control
 - -Only supports Java and Python
 - -Now also supports PHP and Go

Computer Science

Public or Private

- Not all enterprises are comfortable with using **public cloud** services
 - -Don't want to share CPU cycles or disks with competitors
 - -Privacy and regulatory concerns
- Private Cloud
 - -Use cloud computing concepts in a private data center
 - Automate VM management and deployment
 - Provides same convenience as public cloud
 - May have higher cost
- Hybrid Model

- Move resources between private and public depending on load

Lecture 17, page 19

Cloud Challenges

- Privacy / Security
 - -How to guarantee isolation between client resources?
- Extreme Scalability
 - -How to efficiently manage 1,000,000 servers?
- Programming models
 - -How to effectively use 1,000,000 servers?

Programming Models

- Client/Server
 - -Web servers, databases, CDNs, etc
- Batch processing
 - -Business processing apps, payroll, etc
- Map Reduce
 - -Data intensive computing
 - -Scalability concepts built into programming model

Lecture 17, page 21