
Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Last Class: CPU Scheduling
• Pre-emptive versus non-preemptive schedulers
• Goals for Scheduling:

– Minimize average response time
– Maximize throughput
– Share CPU equally
– Other goals?

• Scheduling Algorithms:
– Selecting a scheduling algorithm is a policy decision - consider tradeoffs
– FSCS
– Round-robin
– SJF/SRTF
– MLFQ
– Lottery scheduler

1

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Today: Threads

• What are threads?

• Where should we implement threads? In the kernel? In a user
level threads package?

• How should we schedule threads (or processes) onto the CPU?

2

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Processes versus Threads
• A process defines the address space, text, resources, etc.,
• A thread defines a single sequential execution stream within a

process (PC, stack, registers).
• Threads extract the thread of control information from the

process
• Threads are bound to a single process.
• Each process may have multiple threads of control within it.

– The address space of a process is shared among all its threads
– No system calls are required to cooperate among threads
– Simpler than message passing and shared-memory

3

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Single and Multithreaded Processes

4

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Classifying Threaded Systems
Operating Systems can support one or many address spaces, and one or many

threads per address space.

5

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Example Threaded Program

• Forking a thread can be a system call to the kernel, or a
procedure call to a thread library (user code).

6

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Kernel Threads

• A kernel thread, also known as a lightweight process, is a thread
that the operating system knows about.

• Switching between kernel threads of the same process requires a
small context switch.
– The values of registers, program counter, and stack pointer must be

changed.
– Memory management information does not need to be changed since the

threads share an address space.
• The kernel must manage and schedule threads (as well as

processes), but it can use the same process scheduling algorithms.
!Switching between kernel threads is slightly faster than
 switching between processes.

7

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

User-Level Threads
• A user-level thread is a thread that the OS does not know about.

• The OS only knows about the process containing the threads.

• The OS only schedules the process, not the threads within the
process.

• The programmer uses a thread library to manage threads (create
and delete them, synchronize them, and schedule them).

8

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

User-Level Threads

9

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

User-Level Threads: Advantages
• There is no context switch involved when switching threads.
• User-level thread scheduling is more flexible

– A user-level code can define a problem dependent thread scheduling policy.
– Each process might use a different scheduling algorithm for its own threads.
– A thread can voluntarily give up the processor by telling the scheduler it

will yield to other threads.
• User-level threads do not require system calls to create them or

context switches to move between them

! User-level threads are typically much faster than kernel
threads

10

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

User-Level Threads: Disadvantages
• Since the OS does not know about the existence of the user-level

threads, it may make poor scheduling decisions:
– It might run a process that only has idle threads.
– If a user-level thread is waiting for I/O, the entire process will wait.
– Solving this problem requires communication between the kernel and the

user-level thread manager.
• Since the OS just knows about the process, it schedules the

process the same way as other processes, regardless of the
number of user threads.

• For kernel threads, the more threads a process creates, the more
time slices the OS will dedicate to it.

11

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Example: Kernel and User-Level
Threads in Solaris

12

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Threading Models

• Many-to-one, one-to-one, many-to-many and two-level

13

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Two-level Model

14

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Thread Libraries

• Thread library provides programmer with API for
creating and managing threads

• Two primary ways of implementing
– Library entirely in user space
– Kernel-level library supported by the OS

15

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Pthreads

• May be provided either as user-level or kernel-level
• A POSIX standard (IEEE 1003.1c) API for thread

creation and synchronization
• API specifies behavior of the thread library,

implementation is up to development of the library
• Common in UNIX operating systems (Solaris, Linux,

Mac OS X)

• WIN32 Threads: Similar to Posix, but for Windows

16

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Java Threads
• Java threads are managed by the JVM

• Typically implemented using the threads model
provided by underlying OS

• Java threads may be created by:�

– Extending Thread class
– Implementing the Runnable interface�

17

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Examples

Pthreads:

 pthread_attr_init(&attr); /* set default attrributes */

 pthread_create(&tid, &attr, sum, ¶m);

Win32 threads

ThreadHandle = CreateThread(NULL, 0, Sum, &Param, 0, &ThreadID);

Java Threads:

Sum sumObject = new Sum();

Thread t = new Thread(new Summation(param, SumObject));

t.start(); // start the thread

18

Computer Science Lecture 6, page Computer Science CS377: Operating Systems

Summary

• Thread: a single execution stream within a process
• Switching between user-level threads is faster than between kernel

threads since a context switch is not required.
• User-level threads may result in the kernel making poor

scheduling decisions, resulting in slower process execution than if
kernel threads were used.

• Many scheduling algorithms exist. Selecting an algorithm is a
policy decision and should be based on characteristics of
processes being run and goals of operating system (minimize
response time, maximize throughput, ...).

19

