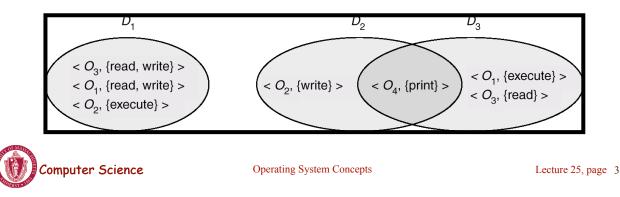
Today: Protection

- Goals of Protection
- Domain of Protection
- Access Matrix
- Capability-Based Systems

Operating System Concepts

Lecture 25, page 1


Protection

- Operating system consists of a collection of objects, hardware or software
- Each object has a unique name and can be accessed through a well-defined set of operations.
- Protection problem ensure that each object is accessed correctly and only by those processes that are allowed to do so.

Domain Structure

- Access-right = <object-name, rights-set> where rights-set is a subset of all valid operations that can be performed on the object.
- Domain = set of access-rights
 - associated with users, user groups and their processes

Domain Implementation (UNIX)

- System consists of 2 domains:
 - User
 - Supervisor
- UNIX
 - Domain = user-id
 - Domain switch accomplished via file system.
 - Each file has associated with it a domain bit (setuid bit).
 - When file is executed and setuid = on, then user-id is set to owner of the file being executed. When execution completes user-id is reset.

Access Matrix

- View protection as a matrix (*access matrix*)
- Rows represent domains
- Columns represent objects
- Access(i, j) is the set of operations that a process executing in Domain_i can invoke on Object_i

Operating System Concepts

Lecture 25, page 5

Access Matrix

object domain	F ₁	F ₂	F ₃	printer
D ₁	read		read	
D ₂				print
D ₃		read	execute	
<i>D</i> ₄	read write		read write	

Capability-Based Systems

- Hydra
 - Fixed set of access rights known to and interpreted by the system.
 - Interpretation of user-defined rights performed solely by user's program; system provides access protection for use of these rights.
- Cambridge CAP System
 - Data capability provides standard read, write, execute of individual storage segments associated with object.
 - Software capability -interpretation left to the subsystem, through its protected procedures.

Operating System Concepts

Lecture 25, page 7

Course Wrap-up and Review

Final Exam covers:

- More emphasis on File & I/O systems and distributed systems
- Final is comprehensive

Course Overview

- Processes & Threads
- Memory
- I/O, file systems
- Networking, distributed systems

Hardware abstraction	Example OS Services	User abstraction	
Processor	Process management, Scheduling, Traps, protection, accounting, synchronization	Process	
Memory	Management, Protection, virtual memory	Address spaces	
I/O devices	Concurrency with CPU, Interrupt handling	Terminal, mouse, printer, system calls	
File System	File management, Persistence	Files	
Distributed systems	Networking, security, distributed file system	Remote procedure calls, network file system	

Lecture 25, page 9

Highlights of Process Management

- 1. What is a context switch? What happens during a context switch? What causes a context switch to occur?
- 2. What is the difference between a process and a thread?
- 3. What are FCFS, Round Robin, SJF, and Multilevel Feedback Queue algorithms?
- 4. What is an I/O bound process? What is a CPU bound process? Is there any reason to treat them differently for scheduling purposes?
- 5. What is a thread? User level v/ kernel-level
- 6. What is a semaphore? What are the three things a semaphore can be used for?
- 7. What is a monitor? What is a condition variable?
- 8. What is busy waiting?
- 9. What are the four necessary conditions for deadlock to occur?
- 10. What is the difference between deadlock detection and deadlock prevention?
- 11. After detecting deadlock, what options are conceivable for recovering from deadlock?

Computer Science

Highlights of Memory and I/O Management

- 1. What is virtual memory and why do we use it?
- 2. What is paging, a page?
- 3. What does the OS store in the page table?
- 4. What is a TLB? How is one used?
- 5. What is a page fault, how does the OS know it needs to take one, and what does the OS do when a page fault occurs?
- 6. Page replacement algorithms: FIFO, MIN, LRU, Second chance. For each understand how they work, advantages and disadvantages.
- 7. How does the OS communicate with I/O devices?
- 8. What are I/O buffers used for?
- 9. What are I/O caches used for? How do they affect reading and writing to I/O devices?
- 10. What is seek time?
- 11. What is rotational latency?
- 12. What is transfer time?
- 13. Disk scheduling algorithms: FIFO, SSTF, SCAN, C-SCAN. How do they work, advantages and disadvantages.

CS377: Operating Systems

Lecture 25, page 11

Memory Management

Topics you should understand:

- 1. What is virtual memory and why do we use it?
- 2. Memory allocation strategies:
 - Contiguous allocation (first-fit and best-fit algorithms)
 - Paging
 - Segmentation
 - Paged segmentation

Memory Management (cont.)

For each strategy, understand these concepts:

- Address translation
- Hardware support required
- Coping with fragmentation
- Ability to grow processes
- Ability to share memory with other processes
- Ability to move processes
- Memory protection
- What needs to happen on a context switch to support memory management

CS377: Operating Systems

Lecture 25, page 13

File Systems

Topics you should understand:

- 1. What is a file, a file type?
- 2. What types of access are typical for files?
- 3. What does the OS do on a file open, file close?
- 4. What is a directory?
- 5. What is a link?
- 6. What happens if the directory structure is a graph?
- 7. How does an OS support multiple users of shared files?
- 8. Strategies for laying files out on disk. Advantages and disadvantages.
 - Contiguous allocation
 - Linked
 - Indexed

Computer Science

Topics you should understand

- Direct Memory Access
- Polling and Interrupts
- Caching and Buffering

CS377: Operating Systems

Lecture 25, page 15

Distributed Systems

- 1. What is the difference between a distributed system and a parallel system?
- 2. What advantages do distributed systems have over isolated systems?
- 3. What advantages do isolated systems have over distributed systems?

Networks

- 1. What is a LAN?
- 2. What is a WAN?
- 3. What are common network topologies? Which are most suitable to WANs? Which to LANs?
- 4. How do node failures affect the different network topologies?
- 5. What are the expected communication costs for the different network topologies?
- 6. What are packets?
- 7. What is a network protocol stack? What is TCP/IP?

CS377: Operating Systems

Lecture 25, page 17

Distributed sharing

- 1. What is data migration? When would you use it?
- 2. What is computation migration? When would you use it?
- 3. What is job migration? When would you use it?

Remote Procedure Call

- 1. What is RPC?
- 2. How does RPC differ from normal procedure call?
- 3. What extra computation is required to do RPC instead of a normal procedure call?
- 4. Would you ever use RPC to communicate between two processes on the same machine?

CS377: Operating Systems

Lecture 25, page 19

Distributed file systems

- 1. What are location transparent names?
- 2. What are location independent names?
- 3. What does it mean to say that a distributed file system has a single (global) namespace?
- 4. What is a cache?
- 5. What are the advantages of using a cache in a distributed file system? What are the disadvantages?
- 6. What are the advantages and disadvantages of write-back and write-through caches?

Protection

- 1. What is protection and how does it differ from security?
- 2. What is a domain?
- 3. What is a domain access matrix? How are these implemented in actual operating systems?
- 4. How can entries in an access matrix be modified? What is a domain switch and why is it needed?

CS377: Operating Systems

Lecture 25, page 21

General Skills

- You should have a good sense of how the pieces fit together and how changes in one part of the OS might impact another.
- You will **not** be asked to read or write Java code.
- You will **not** be asked detailed questions about any specific operating system such as Unix, Windows NT.

Sermons in Computer Science

- Simplicity
- Performance
- Programming as Craft
- Information is Property
- Stay Broad

• Ack: Tom Anderson, U. Washington and M. Dahlin U. Texas

Lecture 25, page 23