Data Centers and Cloud Computing

CS377 Guest Lecture Tian Guo

Lecture 17, page

Data Centers and Cloud Computing

- Intro. to Data centers
- Virtualization Basics
- Intro. to Cloud Computing
 Case Study: Amazon EC2

Data Centers

- Large server and storage farms
 - -1000s of servers
 - -Many TBs or PBs of data

- Used by
 - -Enterprises for server applications
 - -Internet companies
 - Some of the biggest DCs are owned by Google, Facebook, etc
- Used for
 - -Data processing
 - -Web sites

Computer Science

-Business apps

Inside a Data Center

- Giant warehouse filled with:
 - -Racks of servers
 - -Storage arrays
 - -Network switches
- Cooling infrastructure
- Power converters
- Backup generators

MGHPCC Data Center

• Data center in Holyoke

Computer Science

Modular Data Center

- Use shipping containers
- Each container filled with thousands of servers
- Can easily add new containers
 "Plug and play"
 - -Just add electricity
- Allows data center to be easily expanded
- Pre-assembled, cheaper

Computer Science

Traditional vs "Modern"

- Data Center architecture and uses have been changing
- Traditional static
 - -Applications run on physical servers
 - -System admin monitor and manually manage servers
 - -Use Storage Array Networks (SAN) or Network Attached Storage to hold data
- Modern dynamic and large scale
 - Run applications inside virtual machines
 - Flexible mapping form virtual to physical resources
 - Increased automation allows larger scale

Data Center Challenges

- Resource management
 - -How to efficiently use server and storage resources?
 - -Many apps have variable, unpredictable workloads
 - -Want high performance and low cost
 - -Automated resource management
 - -Performance profiling and prediction
- Energy Efficiency
 - -Servers consume huge amounts of energy
 - -Want to be "green"

Data Center Costs

• Running a data center is expensive

http://perspectives.mvdirona.com/2008/11/28/ CostOfPowerInLargeScaleDataCenters.aspx

Computer Science

Economy of Scale

- Larger data centers can be cheaper to buy and run than smaller ones
 - -Lower prices for buying equipment in bulk
 - -Cheaper energy rates
- Automation allows small number of sys admins to manage thousands of servers
- General trend is towards larger mega data centers -100,000s of servers

Virtualization

- Separation of a service request from the underlying physical delivery of that service.
- Achieving virtual machine virtualization
 - CPU virtualization
 - Memory virtualization
 - Device and I/O virtualization

Virtualization Timeline

- The pioneer project
 - -1964, Started in IBM Cambridge Science Center, CP-40
- VMWare IA-32 virtual platform
 - -1999, with the company founded in the previous year
- First open source x86 hypervisor
 - 2003, Computer Laboratory, University of Cambridge, Xen
- First professional open source virtualization software -2007, VirtualBox

CPU Virtualization

Full Virtualization

- -Combinations of binary translation (OS instructions) and direct execution (user-level instructions)
- -Neither hardware nor OS assist are required

CPU Virtualization

- Para-virtualization
 - -Requires kernel modifications (OS assisted)
 - -Example: Xen

CPU Virtualization

- Hardware Assisted Virtualization
 - -Intel virtualization technology (VT-x) and AMD-V
 - -Only available for processors after year 2006

Memory Virtualization

- Similar to virtual memory support in OS
- VMM maps guest OS physical memory to actual machine memory
 - -Avoid two levels of translation on every memory access

Device I/O Virtualization

- Managing the routing of I/O requests
 - between virtual devices and shared physical hardware
- Software based I/O virtualization
 - -e.g. virtual NICs

Server Virtualization

- Allows a server to be "sliced" into Virtual Machines
- VM has own OS/applications
- Rapidly adjust resource allocation
- VM migration within a LAN

Virtualization in Data Centers

- Virtual Servers
 - -Consolidate servers
 - -Faster deployment
 - -Easier maintenance

- Virtual Desktops
 - -Host employee desktops in VMs
 - -Remote access with thin clients
 - Desktop is available anywhere
 - -Easier to manage and maintain

What is the cloud?

The Cloud Stack

Software as a Service

Hosted applications Managed by provider

Platform as a Service

Platform to let you run your own apps Provider handles scalability

Infrastructure as a Service

Raw infrastructure Can do whatever you want with it

laaS: Amazon EC2

- Rents servers and storage to customers
 - –Uses virtualization to share each server for multiple customers
 - -Economy of scale lowers prices
 - -Can create VM with push of a button

Amazon Pricing

• EC2 Instances

- -Different instance types provides different CPU, RAM, storage and networking capacity.
- On-demand, reserved and spot instances

	t1.micro	r3.4xlarge	r3.8xlarge
VCPUs	1	16	32
RAM	1GB	122GB	244GB
On-demand	\$0.013/hr	\$1.400/hr	\$2.800/hr
Spot	\$0.0031/hr	\$0.128/hr	\$0.256/hr

Storage	\$0.10/GB per month
---------	---------------------

Bandwidth \$0.10 per GB

Amazon EC2 Demo

- Amazon credentials
 - Verify your identify (is it actually you that request service)
 - Public/Private key pair for SSH into instance.
- Find the Amazon Machine Images (AMIs)
 - Types: public, non-public (explicit, implicit)
- Start the instance using AMI
 - Host your own web sites
- Terminate instances
- Try it out yourself: <u>http://aws.amazon.com/free/</u>

PaaS: Google App Engine

- Provides highly scalable execution platform
 - -Must write application to meet App Engine API
 - -App Engine will autoscale your application
 - -Strict requirements on application state
 - "Stateless" applications are much easier to scale
- Not based on virtualization
 - -Multiple users' threads running in same OS
 - -Allows google to quickly increase number of "worker threads" running each client's application
- Simple scalability, but limited control
 - -Only supports Java and Python
 - -Now also supports PHP and Go

Public or Private

- Not all enterprises are comfortable with using **public cloud** services
 - -Don't want to share CPU cycles or disks with competitors
 - -Privacy and regulatory concerns
- Private Cloud
 - -Use cloud computing concepts in a private data center
 - Automate VM management and deployment
 - Provides same convenience as public cloud
 - May have higher cost
- Hybrid Model

-Move resources between private and public depending on load

Cloud Challenges

• Privacy / Security

-How to guarantee isolation between client resources?

• Extreme Scalability

-How to efficiently manage 1,000,000 servers?

- Programming models
 - -How to effectively use 1,000,000 servers?

Programming Models

Client/Server

-Web servers, databases, CDNs, etc

• Batch processing

-Business processing apps, payroll, etc

- Map Reduce
 - –Data intensive computing
 - -Scalability concepts built into programming model

