
Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Last Class: Paging
• Process generates virtual addresses from 0 to Max.
• OS divides the process onto pages; manages a page table for every

process; and manages the pages in memory
• Hardware maps from virtual addresses to physical addresses.
!
!
!
!

1

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Initializing Memory when Starting a Process

1. Process needing k pages arrives.
2. If k page frames are free, then allocate these frames to pages.

Else free frames that are no longer needed.
3. The OS puts each page in a frame and then puts the frame

number in the corresponding entry in the page table.
4. OS marks all TLB entries as invalid (flushes the TLB).
5. OS starts process.
6. As process executes, OS loads TLB entries as each page is

accessed, replacing an existing entry if the TLB is full.

2

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Saving/Restoring Memory on a Context
Switch

• The Process Control Block (PCB) must be extended to contain:
– The page table
– Possibly a copy of the TLB

• On a context switch:
1. Copy the page table base register value to the PCB.
2. Copy the TLB to the PCB (optionally).
3. Flush the TLB.
4. Restore the page table base register.
5. Restore the TLB if it was saved.

• Multilevel Paging: If the virtual address space is huge, page
tables get too big, and many systems use a multilevel paging
scheme (refer OSC for details)

3

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Sharing
Paging allows sharing of memory across processes, since memory used by a

process no longer needs to be contiguous.
• Shared code must be reentrant, that means the processes that are using it cannot

change it (e.g., no data in reentrant code).
• Sharing of pages is similar to the way threads share text and memory with each

other.
• A shared page may exist in different parts of the virtual address space of each

process, but the virtual addresses map to the same physical address.
• The user program (e.g., emacs) marks text segment of a program as reentrant

with a system call.
• The OS keeps track of available reentrant code in memory and reuses them if a

new process requests the same program.
• Can greatly reduce overall memory requirements for commonly used

applications.

4

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Today: Segmentation
Segments take the user's view of the program and gives it to the OS.
• User views the program in logical segments, e.g., code, global

variables, stack, heap (dynamic data structures), not a single linear
array of bytes.

• The compiler generates references that identify the segment and
the offset in the segment, e.g., a code segment with offset = 399

• Thus processes thus use virtual addresses that are segments and
segment offsets.

⇒Segments make it easier for the call stack and heap to grow
dynamically. Why?

⇒Segments make both sharing and protection easier. Why?

5

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Implementing Segmentation
• Segment table: each entry contains a base address in memory,

length of segment, and protection information (can this segment
be shared, read, modified, etc.).

• Hardware support: multiple base/limit registers.
!
!
!
!

6

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Implementing Segmentation
• Compiler needs to generate virtual addresses whose upper order

bits are a segment number.
• Segmentation can be combined with a dynamic or static relocation

system,
– Each segment is allocated a contiguous piece of physical memory.
– External fragmentation can be a problem again

• Similar memory mapping algorithm as paging. We need
something like the TLB if programs can have lots of segments

!
• Let's combine the ease of sharing we get from segments with

efficient memory utilization we get from pages.

7

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Combining Segments and Paging
• Treat virtual address space as a collection of segments (logical

units) of arbitrary sizes.
• Treat physical memory as a sequence of fixed size page frames.
• Segments are typically larger than page frames,
⇒Map a logical segment onto multiple page frames by paging the

segments

8

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Combining Segments and Paging

9

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Addresses in Segmented Paging
• A virtual address becomes a segment number, a page within that

segment, and an offset within the page.
• The segment number indexes into the segment table which yields

the base address of the page table for that segment.
• Check the remainder of the address (page number and offset)

against the limit of the segment.
• Use the page number to index the page table. The entry is the

frame. (The rest of this is just like paging.)
• Add the frame and the offset to get the physical address.

10

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Addresses in Segmented Paging

11

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Addresses in Segmented Paging: Example

• Given a memory size of 256 addressable words,
• a page table indexing 8 pages,
• a page size of 32 words, and
• 8 logical segments

!
• How many bits is a physical address?
• How many bits is a virtual address?
• How many bits for the seg #, page #, offset?
• How many segment table entries do we need?
• How many page table entries do we need?

12

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Sharing Pages and Segments
• Share individual pages by copying page table entries.
• Share whole segments by sharing segment table entries, which is

the same as sharing the page table for that segment.
• Need protection bits to specify and enforce read/write permission.

– When would segments containing code be shared?
– When would segments containing data be shared?

13

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Sharing Pages and Segments:
Implementation Issues

• Where are the segment table and page tables stored?
– Store segment tables in a small number of associative registers; page tables

are in main memory with a TLB (faster but limits the number of segments a
program can have)

– Both the segment tables and page tables can be in main memory with the
segment index and page index combined used in the TLB lookup (slower
but no restrictions on the number of segments per program)

• Protection and valid bits can go either on the segment or the page
table entries
!

• Note: Just like recursion, we can do multiple levels of paging and
segmentation when the tables get too big.

14

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Segmented Paging: Costs and Benefits
• Benefits: faster process start times, faster process growth,

memory sharing between processes.
• Costs: somewhat slower context switches, slower address

translation.
• Pure paging system => (virtual address space)/(page size) entries

in page table. How many entries in a segmented paging system?
• What is the performance of address translation of segmented

paging compared to contiguous allocation with relocation?
Compared to pure paging?

• How does fragmentation of segmented paging compare with
contiguous allocation? With pure paging?

15

Computer Science Lecture 13, page Computer Science

Inverted Page Tables

• Techniques to scale to very large address spaces
!

• Multi-level page tables
!

• Inverted index
– Page table is a hash table with key-value lookups

• Key=page number, value = frame number
• Page table lookups are slow
• Use TLBs for efficiency

CS377: Operating Systems 16

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Putting it all together
• Relocation using Base and Limit registers

– simple, but inflexible
!
• Segmentation:

– compiler's view presented to OS
– segment tables tend to be small
– memory allocation is expensive and complicated (first fit, worst fit, best

fit).
– compaction is needed to resolve external fragmentation.

17

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Putting it all together
• Paging:

– simplifies memory allocation since any page can be allocated to any frame
– page tables can be very large (especially when virtual address space is large

and pages are small)
!
• Segmentation & Paging

– only need to allocate as many page table entries as we need (large virtual
address spaces are not a problem).

– easy memory allocation, any frame can be used
– sharing at either the page or segment level
– increased internal fragmentation over paging
– two lookups per memory reference

18

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Today: Demand Paged Virtual Memory
• Up to now, the virtual address space of a process fit in memory,

and we assumed it was all in memory.
!

• OS illusions:ac
1. treat disk (or other backing store) as a much larger, but much slower main

memory
2. analogous to the way in which main memory is a much larger, but much

slower, cache or set of registers
!

• The illusion of an infinite virtual memory enables
1. a process to be larger than physical memory, and
2. a process to execute even if all of the process is not in memory
3. Allow more processes than fit in memory to run concurrently.

19

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Demand Paged Virtual Memory
• Demand Paging uses a memory as a cache for the disk
• The page table (memory map) indicates if the page is on disk or

memory using a valid bit
• Once a page is brought from disk into memory, the OS updates the

page table and the valid bit
• For efficiency reasons, memory accesses must reference pages

that are in memory the vast majority of the time
– Else the effective memory access time will approach that of the disk

• Key Idea: Locality---the working set size of a process must fit in
memory, and must stay there. (90/10 rule.)

20

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Demand Paged Virtual Memory

21

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

When to load a page?
• At process start time: the virtual address space must be no larger

than the physical memory.
• Overlays: application programmer indicates when to load and

remove pages.
– Allows virtual address space to be larger than physical address space
– Difficult to do and is error-prone

• Request paging: process tells an OS before it needs a page, and
then when it is through with a page.

22

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

When to load a page?
• Demand paging: OS loads a page the first time it is referenced.

– May remove a page from memory to make room for the new page
– Process must give up the CPU while the page is being loaded
– Page-fault: interrupt that occurs when an instruction references a page that

is not in memory.
!

• Pre-paging: OS guesses in advance which pages the process will
need and pre-loads them into memory
– Allows more overlap of CPU and I/O if the OS guesses correctly.
– If the OS is wrong => page fault
– Errors may result in removing useful pages.
– Difficult to get right due to branches in code.

23

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Implementation of Demand Paging
• A copy of the entire program must be stored on disk. (Why?)
• Valid bit in page table indicates if page is in memory.
 1: in memory 0: not in memory (either on disk or bogus address)

• If the page is not in memory, trap to the OS on first the
reference

• The OS checks that the address is valid. If so, it
1. selects a page to replace (page replacement algorithm)
2. invalidates the old page in the page table
3. starts loading new page into memory from disk
4. context switches to another process while I/O is being done
5. gets interrupt that page is loaded in memory
6. updates the page table entry
7. continues faulting process (why not continue current process?)

24

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Swap Space
• What happens when a page is removed from memory?

– If the page contained code, we could simply remove it since it can be re-
loaded from the disk.

– If the page contained data, we need to save the data so that it can be
reloaded if the process it belongs to refers to it again.

– Swap space: A portion of the disk is reserved for storing pages that are
evicted from memory

• At any given time, a page of virtual memory might exist in one or
more of:
– The file system
– Physical memory
– Swap space

• Page table must be more sophisticated so that it knows where to
find a page

25

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Performance of Demand Paging
• Theoretically, a process could access a new page with each instruction.
• Fortunately, processes typically exhibit locality of reference

– Temporal locality: if a process accesses an item in memory, it will tend to reference
the same item again soon.

– Spatial locality: if a process accesses an item in memory, it will tend to reference
an adjacent item soon.

!
• Let p be the probability of a page fault (0 ≤ p ≤ 1).

!
• Effective access time = (1-p) x ma + p x page fault time

– If memory access time is 200 ns and a page fault takes 25 ms
– Effective access time = (1-p) x 200 + p x 25,000,000

• If we want the effective access time to be only 10% slower than memory access
time, what value must p have?

26

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Updating the TLB
• In some implementations, the hardware loads the TLB on a TLB miss.
• If the TLB hit rate is very high, use software to load the TLB

1. Valid bit in the TLB indicates if page is in memory.
2. on a TLB hit, use the frame number to access memory
3. trap on a TLB miss, the OS then

a) checks if the page is in memory
b) if page is in memory, OS picks a TLB entry to replace and then fills it in the

new entry
c) if page is not in memory, OS picks a TLB entry to replace and fills it in as

follows
i. invalidates TLB entry
ii. perform page fault operations as described earlier
iii. updates TLB entry
iv. restarts faulting process

All of this is still functionally transparent to the user.

27

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Transparent Page Faults
How does the OS transparently restart a faulting instruction?

!
• Need hardware support to save

1. the faulting instruction,
2. the CPU state.

• What about instructions with side-effects? (CISC)
– mov a, (r10)+ : moves a into the address contained in register 10 and

increments register 10.
• Solution: unwind side effects

28

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Transparent Page Faults
• Block transfer instructions where the source and destination

overlap can't be undone.
!
!

!
!
!

• Solution: check that all pages between the starting and ending
addresses of the source and destination are in memory before
starting the block transfer

29

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Page Replacement Algorithms
On a page fault, we need to choose a page to evict
Random: amazingly, this algorithm works pretty well.
• FIFO: First-In, First-Out. Throw out the oldest page. Simple to

implement, but the OS can easily throw out a page that is being
accessed frequently.

• MIN: (a.k.a. OPT) Look into the future and throw out the page
that will be accessed farthest in the future (provably optimal
[Belady'66]). Problem?

• LRU: Least Recently Used. Approximation of MIN that works
well if the recent past is a good predictor of the future. Throw out
the page that has not been used in the longest time.

30

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Example: FIFO

3 page Frames
4 virtual Pages: A B C D
Reference stream: A B C A B D A D B C B
FIFO: First-In-First-Out
!
!
!
!
!
!
!
Number of page faults?

A B C A B D A D B C B

frame 1

frame 2

frame 3

31

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Example: MIN

MIN: Look into the future and throw out the page that will be accessed farthest
in the future.
!
!
!
!
!
!
!
!
Number of page faults?

A B C A B D A D B C B

frame 1

frame 2

frame 3

32

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Example: LRU

•LRU: Least Recently Used. Throw out the page that has not been
used in the longest time.
!
!
!
!
!
!
!
Number of page faults?

A B C A B D A D B C B

frame 1

frame 2

frame 3

33

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Example: LRU

•When will LRU perform badly?

A B C A B D A D B C B

frame 1

frame 2

frame 3

34

Computer Science Lecture 13, page Computer Science CS377: Operating Systems

Summary
Benefits of demand paging:
• Virtual address space can be larger than physical address space.
• Processes can run without being fully loaded into memory.

– Processes start faster because they only need to load a few pages (for code
and data) to start running.

– Processes can share memory more effectively, reducing the costs when a
context switch occurs.

• A good page replacement algorithm can reduce the number of
page faults and improve performance

35

