
Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Last Class: Synchronization
!

• Synchronization
– Mutual exclusion
– Critical sections

• Locks
• Synchronization primitives are required to ensure that only
one thread executes in a critical section at a time.

1

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Today: Semaphores

!
!

• What are semaphores?
– Semaphores are basically generalized locks.
– Like locks, semaphores are a special type of variable that supports two

atomic operations and offers elegant solutions to synchronization problems.
– They were invented by Dijkstra in 1965.

2

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Semaphores
• Semaphore: an integer variable that can be updated only using

two special atomic instructions.
• Binary (or Mutex) Semaphore: (same as a lock)

– Guarantees mutually exclusive access to a resource (only one process is in
the critical section at a time).

– Can vary from 0 to 1
– It is initialized to free (value = 1)

• Counting Semaphore:
– Useful when multiple units of a resource are available
– The initial count to which the semaphore is initialized is usually the number

of resources.
– A process can acquire access so long as at least one unit of the resource is

available

3

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Semaphores: Key Concepts
• Like locks, a semaphore supports two atomic operations, Semaphore.Wait() and

Semaphore.Signal().

 S.Wait() // wait until semaphore S
 // is available
 <critical section>
!

 S.Signal() // signal to other processes
 // that semaphore S is free
• Each semaphore supports a queue of processes that are waiting to access the

critical section (e.g., to buy milk).
• If a process executes S.Wait() and semaphore S is free (non-zero), it continues

executing. If semaphore S is not free, the OS puts the process on the wait queue
for semaphore S.

• A S.Signal() unblocks one process on semaphore S's wait queue.

4

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Binary Semaphores: Example
• Too Much Milk using locks:
 Thread A Thread B
!

 Lock.Acquire(); Lock.Acquire();
 if (noMilk){ if (noMilk){
 buy milk; buy milk;
 } }
 Lock.Release(); Lock.Release();

• Too Much Milk using semaphores:
 Thread A Thread B
!

 Semaphore.Wait(); Semaphore.Wait();
 if (noMilk){ if (noMilk){
 buy milk; buy milk;
 } }
 Semaphore.Signal(); Semaphore.Signal();

5

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Implementing Signal and Wait

=> Signal and Wait of course must be atomic!
– Use interrupts or test&set to ensure atomicity

class Semaphore {
 public:
 void Wait(Process P);
 void Signal();
 private:
 int value;
 Queue Q; // queue of processes;
}
Semaphore(int val) {
 value = val;
 Q = empty;
}

Wait(Process P) {
 value = value - 1;
 if (value < 0) {
 add P to Q;
 P->block();
} }
Signal() {
 value = value + 1;
 if (value <= 0){
 remove P from Q;
 wakeup(P);
} }

6

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Signal and Wait: Example
P1: S.Wait();
 S.Wait(); P2: S.Wait();
 S.Signal(); S.Signal();
 S.Signal();

7

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Signal and Wait: Example

8

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Using Semaphores
• Mutual Exclusion: used to guard critical sections

– the semaphore has an initial value of 1
– S->Wait() is called before the critical section, and S->Signal() is called after the

critical section.
• Scheduling Constraints: used to express general scheduling

constraints where threads must wait for some circumstance.
– The initial value of the semaphore is usually 0 in this case.
– Example: You can implement thread join (or the Unix system call

waitpid(PID)) with semaphores:
!
Semaphore S;
!

S.value = 0; // semaphore initialization
!

Thread.Join Thread.Finish
 S.Wait(); S.Signal();

9

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Multiple Consumers and Producers
class BoundedBuffer {!
 public:!
 void Producer(); !
 void Consumer();!
 private:!
 Items buffer;!
 // control access to buffers!
 Semaphore mutex; !
 // count of free slots !
 Semaphore empty; !
 // count of used slots!
 Semaphore full; !
} !
BoundedBuffer::BoundedBuffer(
int N){!
 mutex.value = 1;!
 empty.value = N;!
 full.value = 0;!
 new buffer[N];!
}

BoundedBuffer::Producer(){!
 <produce item>!
 empty.Wait(); // one fewer slot, or
wait!
 mutex.Wait(); // get access to
buffers!
 <add item to buffer>!
 mutex.Signal(); // release buffers!
 full.Signal(); // one more used slot!
}!
BoundedBuffer::Consumer(){!
 full.Wait(); //wait until there's an
item!
 mutex.Wait(); // get access to
buffers!
 <remove item from buffer>!
 mutex.Signal(); // release buffers!
 empty.Signal(); // one more free
slot!
 <use item> }

10

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Multiple Consumers and Producers Problem

11

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Summary
• Locks can be implemented by disabling interrupts or busy waiting
!

• Semaphores are a generalization of locks
!

• Semaphores can be used for three purposes:
– To ensure mutually exclusive execution of a critical section (as locks do).
– To control access to a shared pool of resources (using a counting

semaphore).
– To cause one thread to wait for a specific action to be signaled from another

thread.

12

