
Computer Science Lecture 2, page Computer Science CS377: Operating Systems

Last Class: Introduction to Operating
Systems

!
• An operating system is the interface between the user and the

architecture.
– History lesson in change.
– OS reacts to changes in hardware, and can motivate changes.

User apps

OS

hardware

Virtual machine interface

physical machine interface

1

Computer Science Lecture 2, page Computer Science

Course Staff Office Hours

• Instructor: Prashant Shenoy
– TuTh 9:45 to 10:45, CS building, room 336 or by appt
!

• TA: Brendan Murphy
– Mon: 1:15 to 2:15, CS building room 207
– Fri: 2:30 to 3:30, CS building room 207
– Email: bemurphy@cs.umass.edu

2

Computer Science Lecture 2, page Computer Science CS377: Operating Systems

Today: OS and Computer Architecture

• Basic OS Functionality
• Basic Architecture reminder
• What the OS can do is dictated in part by the

architecture.
• Architectural support can greatly simplify or complicate

the OS.

3

Computer Science Lecture 2, page Computer Science CS377: Operating Systems

Modern Operating System Functionality
• Process and Thread Management
• Concurrency: Doing many things simultaneously (I/0,

processing, multiple programs, etc.)
– Several users work at the same time as if each has a private machine
– Threads (unit of OS control) - one thread on the CPU at a time, but many

threads active concurrently
• I/O devices: let the CPU work while a slow I/O device is

working
• Memory management: OS coordinates allocation of memory

and moving data between disk and main memory.
• Files: OS coordinates how disk space is used for files, in order

to find files and to store multiple files
• Distributed systems & networks: allow a group of machines to

work together on distributed hardware

4

Computer Science Lecture 2, page Computer Science CS377: Operating Systems

Summary of Operating System Principles

• OS as juggler: providing the illusion of a dedicated machine with
infinite memory and CPU.

• OS as government: protecting users from each other, allocating
resources efficiently and fairly, and providing secure and safe
communication.

• OS as complex system: keeping OS design and implementation
as simple as possible is the key to getting the OS to work.

• OS as history teacher: learning from past to predict the future,
i.e., OS design tradeoffs change with technology.

5

Computer Science Lecture 2, page Computer Science

Computer Architecture Basics

• Picture of a motherboard/logicboard

6

Computer Science Lecture 2, page Computer Science CS377: Operating Systems

Generic Computer Architecture

!
• CPU: the processor that performs the actual computation

– Multiple “cores” common in today’s processors
• I/O devices: terminal, disks, video board, printer, etc.

– Network card is a key component, but also an I/O device
• Memory: RAM containing data and programs used by the CPU
• System bus: communication medium between CPU, memory, and

peripherals

Network
card

System bus

7

Computer Science Lecture 2, page Computer Science CS377: Operating Systems

Architectural Features Motivated by OS Services

OS Service Hardware Support
Protection Kernel/user mode, protected

instructions, base/limit registers

Interrupts Interrupt vectors

System calls Trap instructions and trap vectors

I/O Interrupts and memory mapping

Scheduling, error recovery,
accounting

Timer

Synchronization Atomic instructions

Virtual memory Translation look-aside buffers

8

Computer Science Lecture 2, page Computer Science

Protection

• CPU supports a set of assembly instructions
– MOV [address], ax
– ADD ax, bx
!

– MOV CRn (move control register)
– IN, INS (input string)
– HLT (halt)
– LTR (load task register)
– INT n (software interrupt)
!

– Some instructions are sensitive or privileged

9

Computer Science Lecture 2, page Computer Science CS377: Operating Systems

Protection
Kernel mode vs. User mode: To protect the system from aberrant

users and processors, some instructions are restricted to use only
by the OS. Users may not
– address I/O directly
– use instructions that manipulate the state of memory (page table pointers,

TLB load, etc.)
– set the mode bits that determine user or kernel mode
– disable and enable interrupts
– halt the machine

but in kernel mode, the OS can do all these things.
The hardware must support at least kernel and user mode.

– A status bit in a protected processor register indicates the mode.
– Protected instructions can only be executed in kernel mode.

10

Computer Science Lecture 2, page Computer Science CS377: Operating Systems

 
Crossing Protection Boundaries

• System call: OS procedure that executes privileged instructions
(e.g., I/O) ; also API exported by the kernel
– Causes a trap, which vectors (jumps) to the trap handler in the OS kernel.
– The trap handler uses the parameter to the system call to jump to the

appropriate handler (I/O, Terminal, etc.).
– The handler saves caller's state (PC, mode bit) so it can restore control to

the user process.
– The architecture must permit the OS to verify the caller's parameters.
– The architecture must also provide a way to return to user mode when

finished.

11

Computer Science Lecture 2, page Computer Science

Example System calls

12

Computer Science Lecture 2, page Computer Science

Windows System Calls

Some Win32 API calls
13

Computer Science Lecture 2, page Computer Science CS377: Operating Systems

Memory Protection
• Architecture must provide support so that the OS can

– protect user programs from each other, and
– protect the OS from user programs.

• The simplest technique is to use base and limit registers.
• Base and limit registers are loaded by the OS before starting a program.
• The CPU checks each user reference (instruction and data addresses), ensuring

it falls between the base and limit register values

Base register

Limit register

14

Computer Science Lecture 2, page Computer Science 12

Process Layout in Memory

• Processes have three segments: text, data, stack
15

Computer Science Lecture 2, page Computer Science CS377: Operating Systems
14

SP

FP

arg0
arg1

Registers

• Register = dedicated name for one word of memory managed by
CPU
– General-purpose: “AX”, “BX”, “CX” on x86
– Special-purpose:

• “SP” = stack pointer
• “FP” = frame pointer
• “PC” = program counter

• Change processes:�
save current registers &�
load saved registers =�
context switch

16

Computer Science Lecture 2, page Computer Science CS377: Operating Systems
13

D$,.I$.separate

registers

L1

L2

RAM

Disk

10cycle.latency

20cycle.latency

70cycle.latency

100.cycle.latency

40,000,000.cycle.latency.

Network 200,000,000+.cycle.latency.

D$,.I$.unified

lo
ad

evict

Memory Hierarchy

• Higher = small, fast, more $, lower latency
• Lower = large, slow, less $, higher latency

17

Computer Science Lecture 2, page Computer Science CS377: Operating Systems
15

Caches

• Access to main memory: “expensive”
– ~ 100 cycles (slow, but relatively cheap ($))

• Caches: small, fast, expensive memory
– Hold recently-accessed data (D$) or instructions (I$)
– Different sizes & locations

• Level 1 (L1) – on-chip, smallish
• Level 2 (L2) – on or next to chip, larger
• Level 3 (L3) – pretty large, on bus

– Manages lines of memory (32-128 bytes)
!

• Caches are managed by hardware (no explicit OS management)

18

Computer Science Lecture 2, page Computer Science CS377: Operating Systems

Traps
• Traps: special conditions detected by the architecture

– Examples: page fault, write to a read-only page, overflow,
systems call

!
• On detecting a trap, the hardware

– Saves the state of the process (PC, stack, etc.)
– Transfers control to appropriate trap handler (OS routine)

• The CPU indexes the memory-mapped trap vector with the
trap number,

• then jumps to the address given in the vector, and
• starts to execute at that address.
• On completion, the OS resumes execution of the process

19

0: 0x00080000
1: 0x00100000

2: 0x00100480

3: 0x00123010

Computer Science Lecture 2, page Computer Science CS377: Operating Systems

Traps
� Trap Vector:
!
!
!
!
!
!
!

• Modern OS use Virtual Memory traps for many functions: debugging,
distributed VM, garbage collection, copy-on-write, etc.

• Traps are a performance optimization. A less efficient solution is to insert extra
instructions into the code everywhere a special condition could arise.
!

• Recap of System Calls from page 8

0: 0x00080000
1: 0x00100000

2: 0x00100480

3: 0x00123010

Illegal address

Memory violation

Illegal instruction

System call

20

Computer Science Lecture 2, page Computer Science CS377: Operating Systems

I/O Control
• Each I/O device has a little processor inside it that enables it to

run autonomously.
• CPU issues commands to I/O devices, and continues
• When the I/0 device completes the command, it issues an

interrupt
• CPU stops whatever it was doing and the OS processes the I/O

device's interrupt

21

Computer Science Lecture 2, page Computer Science CS377: Operating Systems

Three I/O Methods

Synchronous Asynchronous

22

• Synchronous, asynchronous, memory-mapped

Computer Science Lecture 2, page Computer Science CS377: Operating Systems

Memory-Mapped I/O
• Enables direct access to I/O controller (vs. being required to

move the I/O code and data into memory)
• PCs (no virtual memory), reserve a part of the memory and put

the device manager in that memory (e.g., all the bits for a video
frame for a video controller).

• Access to the device then becomes almost as fast and convenient
as writing the data directly into memory.

23

Computer Science Lecture 2, page Computer Science CS377: Operating Systems

Interrupt based asynchronous I/O
• Device controller has its own small processor which executes

asynchronously with the main CPU.
• Device puts an interrupt signal on the bus when it is finished.

!
• CPU takes an interrupt.

1. Save critical CPU state (hardware state),
2. Disable interrupts,
3. Save state that interrupt handler will modify (software state)
4. Invoke interrupt handler using the in-memory Interrupt Vector
5. Restore software state
6. Enable interrupts
7. Restore hardware state, and continue execution of interrupted process

!
!
!

� �

24

Computer Science Lecture 2, page Computer Science CS377: Operating Systems

Timer & Atomic Instructions
Timer
• Time of Day
• Accounting and billing
• CPU protected from being hogged using timer interrupts

that occur at say every 100 microsecond.
– At each timer interrupt, the CPU chooses a new process to

execute.
Interrupt Vector:

0: 0x2ff080000
1: 0x2ff100000

2: 0x2ff100480

3: 0x2ff123010

keyboard

mouse

timer

Disk 1

25

Computer Science Lecture 2, page Computer Science CS377: Operating Systems

Synchronization
• Interrupts interfere with executing processes.
• OS must be able to synchronize cooperating, concurrent

processes.
→ Architecture must provide a guarantee that short sequences

of instructions (e.g., read-modify write) execute atomically.
Two solutions:
1. Architecture mechanism to disable interrupts before

sequence, execute sequence, enable interrupts again.
2. A special instruction that executes atomically (e.g.,

test&set)

26

Computer Science Lecture 2, page Computer Science CS377: Operating Systems

Virtual Memory
!

• Virtual memory allows users to run programs without loading the
entire program in memory at once.

• Instead, pieces of the program are loaded as they are needed.
• The OS must keep track of which pieces are in which parts of

physical memory and which pieces are on disk.
• In order for pieces of the program to be located and loaded

without causing a major disruption to the program, the hardware
provides a translation lookaside buffer to speed the lookup.

27

Computer Science Lecture 2, page Computer Science CS377: Operating Systems

Summary

!
Keep your architecture book on hand.
!
OS provides an interface to the architecture, but also requires some

additional functionality from the architecture.
!
→The OS and hardware combine to provide many useful and

important features.

28

