<section-header><section-header><list-item><list-item><list-item><list-item><list-item><table-container>

Data Centers

- Large server and storage farms
 - -1000s of servers
 - -Many TBs or PBs of data
- Used by
 - -Enterprises for server applications
 - -Internet companies
 - Some of the biggest DCs are owned by Google, Facebook, etc
- Used for
 - -Data processing
 - -Web sites
 - -Business apps

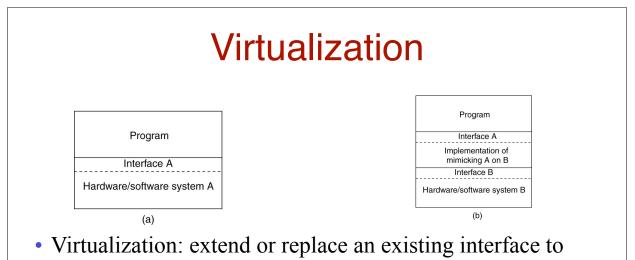
Computer Science

Inside a Data Center

- Giant warehouse filled with:
- Racks of servers
- Storage arrays
- Cooling infrastructure
- Power converters
- Backup generators

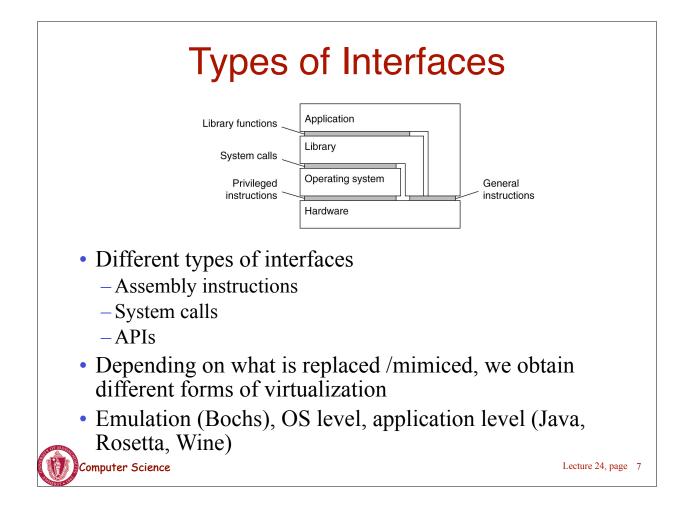
Lecture 24, page 3

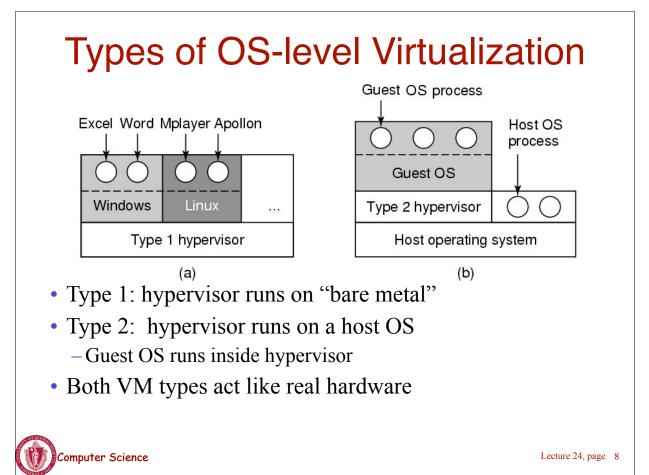
MGHPCC Data Center

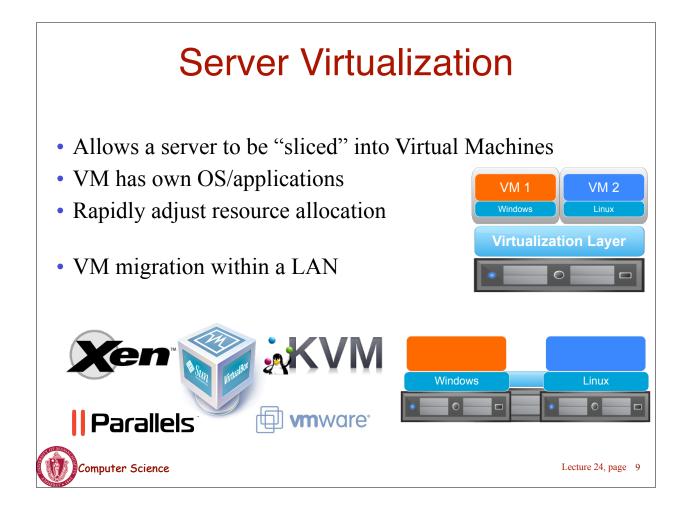

Modular Data Center

- ...or use shipping containers
- Each container filled with thousands of servers
- Can easily add new containers
 - -"Plug and play"
 - -Just add electricity
- Allows data center to be easily expanded
- Pre-assembled, cheaper

omputer Science

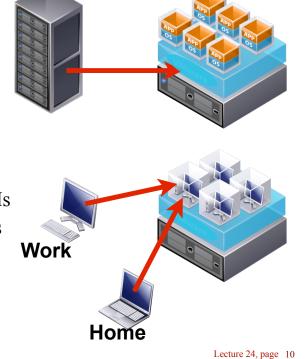



Lecture 24, page 5



- mimic the behavior of another system.
- Introduced in 1970s: run legacy software on newer mainframe hardware
- Handle platform diversity by running apps in VMs

 Portability and flexibility



Virtualization in Data Centers

- Virtual Servers
 - Consolidate servers
 - -Faster deployment
 - -Easier maintenance
- Virtual Desktops

omputer Science

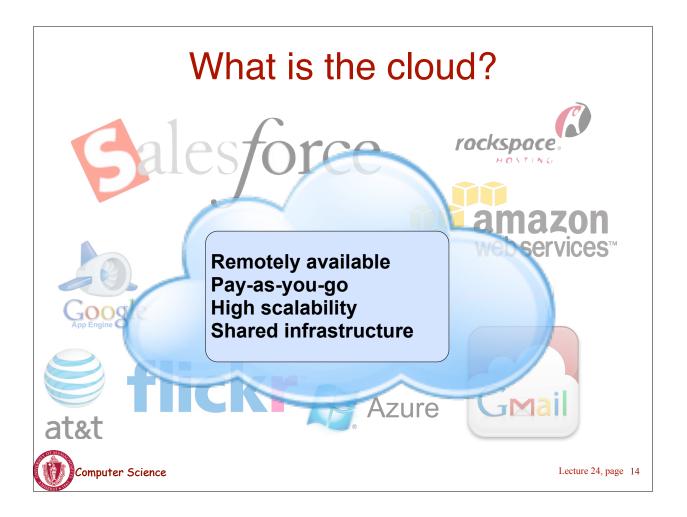
- -Host employee desktops in VMs
- -Remote access with thin clients
- Desktop is available anywhere
- -Easier to manage and maintain

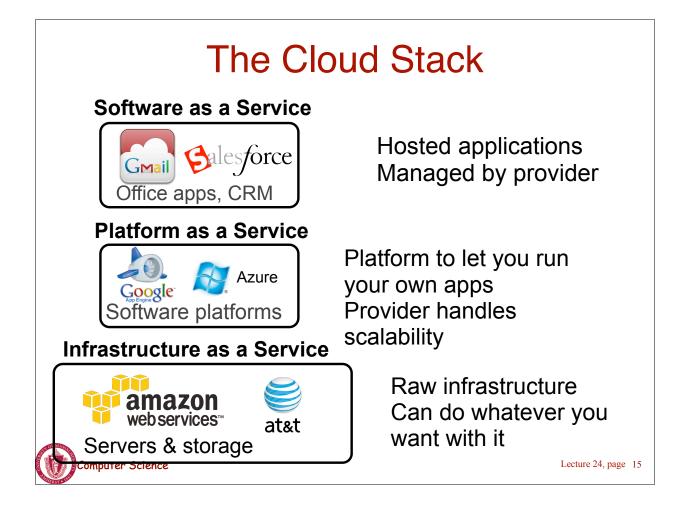
Data Center Challenges

- Resource management
 - -How to efficiently use server and storage resources?
 - -Many apps have variable, unpredictable workloads
 - -Want high performance and low cost
 - -Automated resource management
 - -Performance profiling and prediction
- Energy Efficiency
 - -Servers consume huge amounts of energy
 - -Want to be "green"
 - -Want to save money

Computer Science

Data Center Costs • Running a data center is expensive Monthly Costs \$284,686 Servers \$1,042,440 Power & Cooling Infrastructure Power \$2,997,090 \$1,296,902 Other Infrastructure 3yr server & 15 yr infrastructure amortization http://perspectives.mvdirona.com/2008/11/28/ CostOfPowerInLargeScaleDataCenters.aspx Lecture 24, page 12 Computer Science


Lecture 24, page 11


Economy of Scale

- Larger data centers can be cheaper to buy and run than smaller ones
 - -Lower prices for buying equipment in bulk
 - -Cheaper energy rates
- Automation allows small number of sys admins to manage thousands of servers
- General trend is towards larger mega data centers -100,000s of servers
- Has helped grow the popularity of **cloud computing**

Lecture 24, page 13

Computer Science

laaS: Amazon EC2					
 Rents servers and storage to customers Uses virtualization to share each server for multiple customers Economy of scale lowers prices Can create VM with push of a button 					
		Smallest	Medium	Largest	
V	/CPUs	1	5	33.5	
R	AM	613MB	1.7GB	68.4GB	
P	rice	\$0.02/hr	\$0.17/hr	\$2.10/hr	
S	Storage \$0.10/GB per month				
Bandwidth \$0.10 per GB					
Computer Science					Lecture 24, page 16

<section-header><text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-container>

Public or Private

• Not all enterprises are comfortable with using **public cloud** services

-Don't want to share CPU cycles or disks with competitors

- Privacy and regulatory concerns
- Private Cloud
 - -Use cloud computing concepts in a private data center
 - Automate VM management and deployment
 - Provides same convenience as public cloud
 - May have higher cost
- Hybrid Model

– Move resources between private and public depending on load

Computer Science

Programming Models

- Client/Server – Web servers, databases, CDNs, etc
- Batch processing
 - -Business processing apps, payroll, etc
- Map Reduce
 - -Data intensive computing
 - -Scalability concepts built into programming model

Lecture 24, page 19

Cloud Challenges

- Privacy / Security
 - -How to guarantee isolation between client resources?
- Extreme Scalability
 - -How to efficiently manage 1,000,000 servers?
- Programming models
 - -How to effectively use 1,000,000 servers?

Term Paper on cloud computing What is it? Explain types: IASS, PAAS, SAAS, give examples Amazon EC2 cloud Pricing models Features Google app engine Features Pricing Examples of when to use each