
Computer Science Lecture 20, page Computer Science CS377: Operating Systems

Course Snapshot
We have covered all the fundamental OS components:

• Architecture and OS interactions
• Processes and threads
• Synchronization and deadlock
• Process scheduling
• Memory management
• File systems and I/O

1

Computer Science Lecture 20, page Computer Science CS377: Operating Systems

The Next Few Classes

• Distributed Systems

– Networking Basics
– Distributed services (email, www, telnet)
– Distributed Operating Systems
– Distributed File Systems

• Guest lectures  and special topics
– Linux

2



Computer Science Lecture 20, page Computer Science CS377: Operating Systems

Distributed Systems
• Distributed system: a set of physically separate processors 

connected by one or more communication links
 

• Nearly all systems today are distributed in some way.
– Email, file servers, network printers, remote backup, world wide web

3

Computer Science Lecture 20, page Computer Science CS377: Operating Systems

Parallel versus Distributed Systems
• Tightly-coupled systems: “parallel processing”

– Processors share clock, memory, and run one OS
– Frequent communication

• Loosely-coupled systems: “distributed computing”
– Each processor has its own memory
– Each processor runs an independent OS
– Communication should be less frequent

4



Computer Science Lecture 20, page Computer Science CS377: Operating Systems

Advantages of Distributed Systems
• Resource sharing:

– Resources need not be replicated at each processor (for example, shared 
files)

– Expensive (scarce) resources can be shared (for example, printers)
– Each processor can present the same environment to the user (for 

example, by keeping files on a file server)

• Computational speedup:
– n processors potentially gives you n times the computational power
– Problems must be decomposable into subproblems
– Coordination and communication between cooperating processes 

(synchronization, exchange of results) is needed.

5

Computer Science Lecture 20, page Computer Science CS377: Operating Systems

Advantages of Distributed Systems
• Reliability:

– Replication of resources yields fault tolerance.
– For example, if one node crashes, the user can work on another.
– Performance will degrade, but system remains operational.
– However, if some component of the system is centralized, a single point 

of failure may result
– Example:  If an Edlab workstation crashes, you can use another 

workstation.  If the file server crashes, none of the workstations are 
useful.

• Communication:
– Users/processes on different systems can communicate.
– For example, mail, transaction processing systems like airlines, and 

banks, WWW.

6



Computer Science Lecture 20, page Computer Science CS377: Operating Systems

Distributed Systems
• Modern work environments are distributed => operating systems 

need to be distributed

• What do we need to consider when building these systems?
– Communication and networks
– Transparency (how visible is the distribution?)
– Security
– Reliability
– Performance and scalability
– Programming models

7

Computer Science Lecture 20, page Computer Science

 Distributed System Design

What gets harder when we move from a stand alone system to a 
distributed environment?

• resource sharing
• timing (e.g., synchronization)
• critical sections
• deadlock detection and recovery
• failure recovery

8



Computer Science Lecture 20, page Computer Science CS377: Operating Systems

Networks
• Networks are usually concerned with providing efficient, 

correct, and robust message passing between two separate nodes.
• Local Area Network (LAN) usually connects nodes in a single 

building and needs to be fast and reliable (for example, 
Ethernet).

– Media: twisted-pair, coaxial cable, fiber optics
– Typical bandwidth: 10-100-1000 Mb/s  (10Gb/s now available)

• Wide Area Network (WAN) connects nodes across the state, 
country, or planet.

– WANs are typically slower and less reliable than LAN (for example, 
Internet).

– Media: telephone lines (T1 service), microwave links, satellite channels
– Typical bandwidth: 1.544 Mb/s (T1), 45 Mb/s (T3)

9

Computer Science Lecture 20, page Computer Science CS377: Operating Systems

Principles of Network Communication
• Data sent into the network is chopped into “packets”, the 

network's basic transmission unit.
• Packets are sent through the network.
• Computers at the switching points control the packet flow.
• Analogy: cars/road/police - packets/network/computer
• Shared resources can lead to contention (traffic jams).
• Analogy:

– Shared node - Mullins Center
– Shared link - bridge

10



Computer Science Lecture 20, page Computer Science CS377: Operating Systems

Communication Protocols
• Protocol: a set of rules for communication that are agreed to by 

all parties
• Protocol stack : networking software is structured into layers

– Each layer N, provides a service to layer N+1, by using its own layer N 
procedures and the interface to the N-1 layer.

– Example: International Standards Organization/ Open Systems 
Interconnect  (ISO/OSI)

11

Computer Science Lecture 20, page Computer Science CS377: Operating Systems

ISO Network Protocol Stack
• Application layer: applications that use the net, e.g., mail, netscape, X-

services, ftp, telnet, provide a UI
• Presentation layer: data format conversion, e.g., big/little endian integer 

format)
• Session layer: implements the communication strategy, such as RPC.  

Provided by libraries.
• Transport layer: reliable end-to-end communication between any set of 

nodes.  Provided by OS.
• Network layer: routing and congestion control.  Usually implemented in OS.
• Data Link Control layer: reliable point-to-point communication of packets 

over an unreliable channel. Sometimes implemented in hardware, sometimes 
in software (PPP).

• Physical layer: electrical/optical signaling across a “wire”.  Deals with 
timing issues. Implemented in hardware.

12



Computer Science Lecture 20, page Computer Science CS377: Operating Systems

TCP/IP Protocol Stack

• Most Internet sites use TCP/IP - Transmission Control Protocol/
Internet Protocol.

– It has fewer layers than ISO to increase efficiency.
– Consists of a suite of protocols: UDP, TCP, IP...
– TCP is a reliable protocol -- packets are received in the order they are 

sent
– UDP (user datagram protocol)  an unreliable protocol (no guarantee of 

delivery).

13

Computer Science Lecture 20, page Computer Science CS377: Operating Systems

Packet
• Each message is chopped into packets.

– Each packet contains all the information needed to recreate the original 
message.

– For example, packets may arrive out of order and the destination node 
must be able to put them back into order.

– Ethernet Packet Contents

– The data segment of the packet contains headers for higher protocol layers 
and actual application data

14



Computer Science Lecture 20, page Computer Science CS377: Operating Systems

Point-to-Point Network Topologies

• Fully connected: all nodes connected to all other nodes
– Each message  takes only a single “hop”, i.e., goes directly to the 

destination without going through any other node
– Failure of any one node does not affect communication between other 

nodes
– Expensive, especially with lots of nodes, not  practical for WANs

15

Computer Science Lecture 20, page Computer Science CS377: Operating Systems

Point-to-Point Network Topologies

• Partially connected:  links between some, but not all nodes
– Less expensive, but less tolerant to failures.  A single failure can partition 

the network.
– Sending a message to a node may have to go through several other nodes 

=> need routing algorithms.
– WANs typically use this structure.

16



Computer Science Lecture 20, page Computer Science CS377: Operating Systems

Point-to-Point Networks Topologies

• Tree structure:  network hierarchy
– All messages between direct descendants are fast, but messages between 

“cousins” must go up to a common ancestor and then back down.
– Some corporate networks use this topology, since it matches a hierarchical 

world view...
– Not tolerant of failures.  If any interior node fails, the network is 

partitioned.

17

Computer Science Lecture 20, page Computer Science CS377: Operating Systems

Point-to-Point Networks Topologies

• Star: - all nodes connect to a single centralized node
– The central site is generally dedicated to network traffic.
– Each message takes only two hops.
– If one piece of hardware fails, that disconnects the entire network.
– Inexpensive, and sometimes used for LAN

18



Computer Science Lecture 20, page Computer Science CS377: Operating Systems

Ring Networks Topologies

• One directional ring - nodes can only send in one direction.
– Given n nodes, message may need to go n-1 hops.
– Inexpensive, but one failure partitions the network.

• Bi-directional ring - nodes can send in either direction.
– With n nodes, a message needs to go at at most n/2 hops.
– Inexpensive, tolerates a single failure by increasing message hops. Two 

failures partition the network.

19

Computer Science Lecture 20, page Computer Science CS377: Operating Systems

Ring Networks Topologies

• Doubly connected ring nodes connected to neighbors and one 
away neighbors
– A message takes at most n/4 hops.
– More expensive, but more tolerant of failures.

20



Computer Science Lecture 20, page Computer Science CS377: Operating Systems

Bus Network Topologies

• Bus nodes connect to a common network
• Linear bus - single shared link

– Nodes connect directly to each other  using multiaccess bus technology.
– Inexpensive (linear in the number of nodes) and tolerant of node failures.
– Ethernet LAN use this structure.

• Ring bus - single shared circular link
– Same technology and tradeoffs as a linear bus.

21

Computer Science Lecture 20, page Computer Science

Resource Sharing
There are many mechanisms for sharing (hardware, software, data) resources.
• Data Migration: moving the data around
• Computation Migration: move the computation to the data
• Job Migration: moving the job (computation and data) or part of the job

=> The fundamental tradeoff in resource sharing is to complete user 
instructions as fast and as cheaply as possible. (Fast and cheap 
are usually incompatible.)

If communication is cheap: use all resources
If computation is slow/expensive: local processing
Reality is somewhere in between

22



Computer Science Lecture 20, page Computer Science

Client/Server Model
• One of the most common models for structuring distributed 

computation is by using the client/server paradigm.
– A server is a process or collection of processes that provide a service, e.g., 

name service, file service, database service, etc.
– The server may exist on one or more nodes.
– A client is a program that uses the service.
– A client first binds to the server, i.e., locates it in the network and 

establishes a connection.
– The client then sends the server a request to perform some action. The 

server sends back a response.
– RPC is one common way this structure is implemented.

23

Computer Science Lecture 20, page Computer Science

Remote Procedure Call
Basic idea:
• Servers export procedures for some set of clients to call.
• To use the server, the client does a procedure call.
• OS manages the communication.

24



Computer Science Lecture 20, page Computer Science

Remote Procedure Call: Implementation 
Issues

For each procedure on which we want to support RPC:

• The RPC mechanism uses the procedure signature (number and 
type of arguments and return value)
– to generate a client stub that bundles up the RPC arguments 

and sends it off to the server, and
– to generate the server stub that unpacks the message, and 

makes the procedure call.

25

Computer Science Lecture 20, page Computer Science

Remote Procedure Call: 
Implementation Issues

Client Stub:
  build message

   send message
   wait for response
   unpack reply
   return result

Server Stub:
 create threads
   loop
      wait for a command
      unpack request parameters
      call procedure with thread
      build reply with result(s)
      send reply
   end loop

Comparison between RPC and a regular procedure call

•  Name of procedure

•  Parameters

•  Result

•  Return address

26



Computer Science Lecture 20, page Computer Science

Remote Procedure Call
• How does the client know the right port?

– The binding can be static - fixed at compile time.
– Or the binding can be dynamic - fixed at runtime.

• In most RPC systems, dynamic binding is performed using a 
name service.

– When the server starts up, it exports its interface and identifies itself to a 
network name server

– The client, before issuing any calls, asks the name service for the location 
of a server whose name it knows and then establishes a connection with 
the server.

27

Computer Science Lecture 20, page Computer Science

Example:  Remote Method Invocation (RMI) in 
Java

• Java provides the following classes/interfaces:
– Naming: class that provides the calls to communicate with the remote 

object registry
– public static void bind(String name, Remote obj) - Binds a server to a name.
– public static Remote lookup(String name) - Returns the server object that 

corresponds to a name.
• UnicastRemoteObject: supports references to non-replicated 

remote objects using TCP, exports the interface automatically 
when the server object is constructed

• Java provides the following tools:
–   rmiregistry server-side name server
–   rmic: given the server interface, generates client and server stubs that 

create and interpret packets

28



Computer Science Lecture 20, page Computer Science

Example:  Server in Java
• Server

– Defines an interface listing the signatures of methods the server will 
satisfy

– Implements each of the methods in the interface
– Main program for server:

• Creates one or more server objects - normal constructor call where 
the object being constructed is a subclass of RemoteObject

• Registers the objects with the remote object registry
• Client

– Looks up the server in the remote object registry
– Uses normal method call syntax for remote methods
– Should handle RemoteException

29

Computer Science Lecture 20, page Computer Science

Example: Hello World Server Interface
Declare the methods that the server provides:

package examples.hello;

// All servers must extend the Remote interface.
public interface Hello extends java.rmi.Remote {

       // Any remote method might throw RemoteException.  
       // Indicates network failure.
       String sayHello() throws java.rmi.RemoteException;
}

30



Computer Science Lecture 20, page Computer Science

Example: Hello World Server
package examples.hello;
import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class HelloImpl extends UnicastRemoteObject implements Hello
{
     public HelloImpl() throws RemoteException {
      // The superclass constructor exports the interface and gets a port
       super();     
  }

  public String sayHello() throws RemoteException {
       // This is the "service" provided.
       return  "Hello World!";     
  }

31

Computer Science Lecture 20, page Computer Science

Example: Hello World Server (contd)
public static void main(String args[])
  {
       // Create and install a security manager
       System.setSecurityManager(new RMISecurityManager());

       // Construct the server object.
       HelloImpl obj = new HelloImpl();

       // Register the server with the name server.
       Naming.rebind("//myhost/HelloServer", obj);
  }
}

32



Computer Science Lecture 20, page Computer Science

Example: Hello World Client
package examples.hello;

import java.awt.*;
import java.rmi.*;

public class HelloApplet extends java.applet.Applet {
     String message = "";

     // The init method begins the execution of the applet on the client
     // machine that is viewing the Web page containing the reference 
     // to the applet.
     public void init() {
       try {
            // Looks up the server using the name server on the host that
            // the applet came from.  
            Hello obj = (Hello)Naming.lookup(
                                   "//" + getCodeBase().getHost() + "/HelloServer");

33

Computer Science Lecture 20, page Computer Science

Example: Hello World Client (contd)
    // Calls the sayHello method on the remote object.
         message = obj.sayHello();
    } catch (RemoteException e) {
       System.out.println("HelloApplet RemoteException caught");
    }
  }

  public void paint(Graphics g) {
    // The applet will write the string returned by the remote method
    // call on the display.
    g.drawString(message, 25, 50);
  }
}

34



Computer Science Lecture 20, page Computer Science CS377: Operating Systems

Summary

• Virtually all computer systems contain distributed components
• Networks hook them together
• Networks make tradeoffs between speed, reliability, and expense

35


