
CMPSCI 377 Operating Systems Fall 2013

Lecture 13: October 16
Lecturer: Prashant Shenoy Scribe: Armand Halbert

13.1 Quick Review: TLB

A translation look-aside buffer, or TLB, is a fast, fully associative, memory that maps page to frame map-
pings. It is much smaller, but also much faster, than RAM. The TLB utilizes the 90/10 rule and the current
mappings that are actually being used tend to fit within the TLB. It should also be noted that during a
context switch the TLB should be saved in the PCB (process control block) and the TLB for the process
that will be run next should be restored.

13.1.1 Costs of Using the TLB

The performance of using a TLB is measured using the hit ratio. A TLB hit is when the page that needs
to be access is in the TLB. The opposite case is a TLB miss and requires the page mapping to be retrieved
from the full page table that is stored in RAM. The relative costs are given below as formulas, but first we
have to define some terminology:

• ema: effective memory access, the actual cost of retrieving something from memory (including accessing
the page table).

• ma: memory access, the cost of accessing something in memory given a physical address.

• p: probability of a TLB hit.

• t : cost of a TLB access.

Without a TLB: ema = 2 ∗ma.
With a TLB: ema = (ma + t) ∗ p + (2 ∗ma + t) ∗ (1 − p). Note that as p approaches 1, the ema = (m + t).

13.2 Sharing

Paging allows sharing of memory across processes since the memory used by a process no longer needs to be
contiguous. Different processes simply need to point to the same region in memory. This can also be used
for sharing library code. This shared code must be reentrant, that means the processes that are using it
cannot change it (e.g. no data in reentrant code). Sharing of pages is similar to the way threads share text
and memory with each other. The shared page may exist in different parts of the virtual address space of
each process, but the virtual addresses map to the same physical address. The OS keeps track of available
reentrant code in memory and reuses them if a new process requests the same program. Sharing of pages
across processes can greatly reduce overall memory requirements for commonly used applications.

13-1



13-2 Lecture 13: October 16

13.3 Segmented Paging

In a pure paging based system like that described in the previous lecture, an application’s virtual address
space is divided up into equally sized pages. However, these page sized chunks do not match the logical
way in which an ordinary process would be broken up—programmers think of a process’s memory space
being divided into regions for code, global variables, the stack, and the heap for dynamic data structures.
Segmentation tries to match the programmer’s view by dividing the address space of a process into multiple
variable-length segments, one for each of the categories just described. This can simplify how addresses are
created. For example, it may make sense to address an array by using an offset from the start of the global
variables segment. If paging were used instead of segmentation, the address would need to be determined
using an offset from the start of the process’s entire address space.

To implement segmentation, a virtual address must consist of a segment number and an offset within the
segment. Memory is still physically addressed with a single number. To obtain it, the processor looks
up the segment number in a segment table to find a segment descriptor. The segment descriptor contains
information such as (i) a flag indicating whether the segment is present in main memory, (ii) the address in
main memory of the beginning of the segment (segment’s base address) and (iii) the length of the segment.
To translate an address, the OS verifies that the segment is present and that the offset is less than the
segment length. If a segment is not present in main memory, a hardware interrupt is raised to the operating
system, which may try to read the segment into main memory.

It is possible to combine segmentation and paging by dividing each segment into pages. In systems that
combine them, virtual memory is usually implemented with paging, with segmentation used to provide
memory protection. The virtual address space is treated as a collection of segments of arbitrary sizes, and
the physical memory is treated as a sequence of fixed size page frames. A segment usually spans many pages,
and these pages within a segment are mapped onto actual physical page frames. There may be a segment
corresponding to each logical view of a process - heap segment, code segment, data segment, stack segment
etc. This allows protection or sharing mechanisms to be applied at the granularity of segments, rather than
individually for each page.

13.3.1 Addresses in a Segmented Paging System

While in a pure paging system each virtual address was divided into two portions, p and d, for the page
number and offset respectively, implementing a segmented paging system requires an additional set of bits,
s to be used to represent the segment for a memory address. Thus each virtual address consists of a segment
number, a page number within that segment, and an offset within that page. The segment number indexes
into the segment table which yields the base address of the page table for that segment. The remainder of
the address, page number and offset, is checked against the limit of the segment. A trap is generated if this
limit is violated. Otherwise, the page number is used to index the page table. The entry in the page table
is the page frame. Finally, the physical address is obtained by adding the frame address and the offset.

For example, consider a system with memory size of 256 addressable words, a page table with 8 entries, a
page size of 32 words, and 8 logical segments for each process. In this system, a physical address requires 8
bits total (28 = 256). In a pure paging system, the length of a physical address was always the same as the
length of a virtual address; with segmented paging this may not be the case. For this example, 3 bits will be
needed to index the page table (23 = 8), 3 bits will be needed for the segment, and 5 bits will be needed for
the offset (25 = 32). This is a total of 11 bits for each virtual address, but only 8 bits for each physical one.
Segmented paging adds a small amount of overhead to addresses due to the extra bits needed to specify the
segment; however it provides greater convenience by creating more logically understandable addresses and
improving sharing controls.



Lecture 13: October 16 13-3

13.3.2 Sharing & Protecting Pages and Segments

In a naive system, two processes that are run from the executable would both load into memory identical
segments for the code of the application. To eliminate this redundancy, it is desirable to let applications
easily share their code segments with other processes in a safe (read only) way. This can be easily done by
having two processes point to the same segment in their segment tables. This is much simpler than requiring
each individual page to be explicitly shared. If needed, sharing can also be done on a page-by-page basis by
copying page table entries between two processes.

Segmentation also supports protection and valid bits for both segments and pages. This can be used to force
regions of memory to be read-only. Other bits can be used to specify whether a segment is “executable”;
this can be used to specify whether a region contains code that the processor should be able to execute.
Disabling the executable bit in segments such as the stack and the heap can be used to prevent viruses and
malicious attacks which attempt to inject code into the system by overrunning buffers.

13.3.3 Segmentation Implementation

A segment table could be implemented in registers or in RAM. In practice, the segment and page tables are
typically stored in RAM, and then the TLB is used to cache both types of tables. This can provide fast
accesses at much lower cost than registers, assuming the code has some access locality.

In modern systems with large amounts of RAM, it can become necessary to do hierarchical levels of paging
and segmentation. This can be used to control the growth of page tables for applications. When using
single-level page tables, the full page table must be allocated immediately at startup with sufficient address
space for the full RAM size of the system. In contrast, using hierarchical page tables can allow a process to
be created with only a small page table initially; once that page table begins to fill up, some of its entries
can be used to point to other page tables containing the other pages used by the process. This technique
can be used for both page tables and segment tables. The ema cost, however, does grow as the number of
levels in a page or segment table grows (worst case being (N + 1)m for N levels.

13.3.4 Costs and Benefits of Segmented Paging

Segmentation can improve process startup time since it is clear which segments need to be loaded first in
order to begin running code. Segments also allow for simpler growth because it can be done per segment.
Segmentation also allows for efficient coarse and fine grain sharing of pages and segments. On the downside,
segmentation leads to slower address translation due to multilevel addressing, which can reduce performance.
Context switches can also be more expensive in segmented systems since both the page table and segment
table need to be saved during each context switch.

13.3.5 Inverted Page Tables

Inverted Page Tables are a technique that can be used to scale to even larger address spaces than can be
efficiently handled using multi-level page tables. An inverted index changes page tables to be a key-value
store. To translate a page, the page number is used as a key that is looked up in the store in order to find the
corresponding frame number. The use of efficient hash tables can allow this to scale to very large systems,
however each lookup may be slow. Fortunately, the TLB can still be used to cache address translations,
reducing the performance overhead.


