
Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Last Class: Memory Management
• Uniprogramming
• Static Relocation
• Dynamic Relocation

1

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Today: Paging

Processes typically do not use their entire space in memory all the
time.

Paging
1. divides and assigns processes to fixed sized pages,
2. then selectively allocates pages to frames in memory, and
3. manages (moves, removes, reallocates) pages in memory.

2

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Relocation
• Static Relocation:

– at load time, the OS adjusts the addresses in a process to reflect its position in
memory.

– Once a process is assigned a place in memory and starts executing it, the OS cannot
move it. (Why?)

• Dynamic Relocation:
– hardware adds relocation register (base) to virtual address to get a physical address;
– hardware compares address with limit register (address must be less than base).
– If test fails, the processor takes an address trap and ignores the physical address.

3

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Dynamic Relocation
• Advantages:

– OS can easily move a process during execution.
– OS can allow a process to grow over time.
– Simple, fast hardware: two special registers, an add, and a compare.

• Disadvantages:
– Slows down hardware due to the add on every memory reference.
– Can't share memory (such as program text) between processes.
– Process is still limited to physical memory size.
– Degree of multiprogramming is very limited since all memory of all active

processes must fit in memory.
– Complicates memory management.

4

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Relocation: Properties
• Transparency: processes are largely unaware of sharing.

• Safety: each memory reference is checked.

• Efficiency: memory checks and virtual to physical address
translation are fast as they are done in hardware, BUT if a process
grows, it may have to be moved which is very slow.

5

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Memory Management: Memory Allocation

As processes enter the system, grow, and terminate, the OS must
keep track of which memory is available and utilized.

• Holes: pieces of free memory (shaded above in figure)
• Given a new process, the OS must decide which hole to use for

the process

6

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Memory Allocation Policies
• First-Fit: allocate the first one in the list in which the process fits.

The search can start with the first hole, or where the previous first-
fit search ended.

• Best-Fit: Allocate the smallest hole that is big enough to hold the
process. The OS must search the entire list or store the list sorted
by size hole list.

• Worst-Fit: Allocate the largest hole to the process. Again the OS
must search the entire list or keep the list sorted.

• Simulations show first-fit and best-fit usually yield better storage
utilization than worst-fit; first-fit is generally faster than best-fit.

7

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Fragmentation
• External Fragmentation

– Frequent loading and unloading programs causes free space to be broken
into little pieces

– External fragmentation exists when there is enough memory to fit a process
in memory, but the space is not contiguous

– 50-percent rule: Simulations show that for every 2N allocated blocks, N
blocks are lost due to fragmentation (i.e., 1/3 of memory space is wasted)

– We want an allocation policy that minimizes wasted space.

• Internal Fragmentation:
– Consider a process of size 8846 bytes and a block of size 8848 bytes
⇒ it is more efficient to allocate the process the entire 8848 block than it is to

keep track of 2 free bytes
– Internal fragmentation exists when memory internal to a partition that is

wasted

8

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Compaction

• How much memory is moved?
• How big a block is created?
• Any other choices?

9

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Swapping
• Roll out a process to disk, releasing all the memory it holds.
• When process becomes active again, the OS must reload it in

memory.
– With static relocation, the process must be put in the same position.
– With dynamic relocation, the OS finds a new position in memory for the

process and updates the relocation and limit registers.
• If swapping is part of the system, compaction is easy to add.
• How could or should swapping interact with CPU scheduling?

10

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Paging: Motivation & Features
90/10 rule: Processes spend 90% of their time accessing 10% of

their space in memory.
=> Keep only those parts of a process in memory that are actually

being used
• Pages greatly simplify the hole fitting problem
• The logical memory of the process is contiguous, but pages need

not be allocated contiguously in memory.
• By dividing memory into fixed size pages, we can eliminate

external fragmentation.
• Paging does not eliminate internal fragmentation (1/2 page per

process)

11

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Paging: Example
Mapping pages in logical mem to frames in physical memory

12

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Paging Hardware
• Problem: How do we find addresses when pages are not allocated

contiguously in memory?
• Virtual Address:

– Processes use a virtual (logical) address to name memory locations.
– Process generates contiguous, virtual addresses from 0 to size of the

process.
– The OS lays the process down on pages and the paging hardware translates

virtual addresses to actual physical addresses in memory.
– In paging, the virtual address identifies the page and the page offset.
– page table keeps track of the page frame in memory in which the page is

located.

13

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Paging Hardware
Translating a virtual address to physical address

14

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Paging Hardware
• Paging is a form of dynamic relocation, where each virtual

address is bound by the paging hardware to a physical address.
• Think of the page table as a set of relocation registers, one for

each frame.
• Mapping is invisible to the process; the OS maintains the mapping

and the hardware does the translation.
• Protection is provided with the same mechanisms as used in

dynamic relocation.

15

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Paging Hardware: Practical Details
• Page size (frame sizes) are typically a power of 2 between 512

bytes and 8192 bytes per page.
• Powers of 2 make the translation of virtual addresses into physical

addresses easier. For example, given
• virtual address space of size 2m bytes and a page of size 2n, then
• the high order m-n bits of a virtual address select the page,
• the low order n bits select the offset in the page

16

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Address Translation Example

17

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Address Translation Example
• How big is the page table?

• How many bits for an address. Assume we can address 1 byte
increments?

• What part is p, and d?

• Given virtual address 24, do the virtual to physical translation.

18

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Address Translation Example
• How big is the page table?

– 16 entries

• How many bits for an address. Assume we can address 1 byte
increments?
– 8 bits, 4 for page and 4 for offset

• What part is p, and d?

• Given virtual address 24, do the virtual to physical translation.
– p=1, d=8
– f=6, d=8

19

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Address Translation Example
• How many bits for an address? Assume we can address only 1

word (4 byte) increments?

• What part is p, and d?

• Given virtual address 13, do the virtual to physical translation.

• What needs to happen on a context switch?

20

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Address Translation Example
• How many bits for an address? Assume we can address only 1

word (4 byte) increments?
– 6 bits, 4 for page, 2 for offset

• What part is p, and d?

• Given virtual address 13, do the virtual to physical translation.
– p=3, d=1 (virtual)
– F=9, offset=1 (physical)

• What needs to happen on a context switch?
– Need to save the page table in PCB. Need to restore the page table of new

process.

21

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Making Paging Efficient
How should we store the page table?
• Registers: Advantages? Disadvantages?
• Memory: Advantages? Disadvantages?
• TLB: a fast fully associative memory that stores page numbers

(key) and the frame (value) in which they are stored.
– if memory accesses have locality, address translation has locality too.
– typical TLB sizes range from 8 to 2048 entries.

22

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

The Translation Look-aside Buffer (TLB)

v: valid bit that says the entry is up-to-date

23

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Costs of Using The TLB
• What is the effective memory access cost if the page table is in

memory?

• What is the effective memory access cost with a TLB?

A large TLB improves hit ratio, decreases average memory cost.

24

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Costs of Using The TLB
• What is the effective memory access cost if the page table is in

memory?
– ema = 2 * ma

• What is the effective memory access cost with a TLB?
– ema = (ma + TLB) * p + (2ma + TLB) * (1-p)

A large TLB improves hit ratio, decreases average memory cost.

25

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Initializing Memory when Starting a Process

1. Process needing k pages arrives.
2. If k page frames are free, then allocate these frames to pages.

Else free frames that are no longer needed.
3. The OS puts each page in a frame and then puts the frame

number in the corresponding entry in the page table.
4. OS marks all TLB entries as invalid (flushes the TLB).
5. OS starts process.
6. As process executes, OS loads TLB entries as each page is

accessed, replacing an existing entry if the TLB is full.

26

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Saving/Restoring Memory on a Context
Switch

• The Process Control Block (PCB) must be extended to contain:
– The page table
– Possibly a copy of the TLB

• On a context switch:
1. Copy the page table base register value to the PCB.
2. Copy the TLB to the PCB (optionally).
3. Flush the TLB.
4. Restore the page table base register.
5. Restore the TLB if it was saved.

• Multilevel Paging: If the virtual address space is huge, page
tables get too big, and many systems use a multilevel paging
scheme (refer OSC for details)

27

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Sharing
Paging allows sharing of memory across processes, since memory used by a

process no longer needs to be contiguous.
• Shared code must be reentrant, that means the processes that are using it cannot

change it (e.g., no data in reentrant code).
• Sharing of pages is similar to the way threads share text and memory with each

other.
• A shared page may exist in different parts of the virtual address space of each

process, but the virtual addresses map to the same physical address.
• The user program (e.g., emacs) marks text segment of a program as reentrant

with a system call.
• The OS keeps track of available reentrant code in memory and reuses them if a

new process requests the same program.
• Can greatly reduce overall memory requirements for commonly used

applications.

28

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Summary
• Paging is a big improvement over segmentation:

– They eliminate the problem of external fragmentation and therefore the
need for compaction.

– They allow sharing of code pages among processes, reducing overall
memory requirements.

– They enable processes to run when they are only partially loaded in main
memory.

• However, paging has its costs:
– Translating from a virtual address to a physical address is more time-

consuming.
– Paging requires hardware support in the form of a TLB to be efficient

enough.
– Paging requires more complex OS to maintain the page table.

29

