
Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Last Class: Deadlocks
• Necessary conditions for deadlock:

– Mutual exclusion
– Hold and wait
– No preemption
– Circular wait

• Ways of handling deadlock
– Deadlock detection and recovery
– Deadlock prevention
– Deadlock avoidance

1

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Deadlock Prevention with Resource
Reservation

• Threads provide advance information about the maximum
resources they may need during execution

• Define a sequence of threads {t1, ..., tn} as safe if for each ti, the
resources that ti can still request can be satisfied by the currently
available resources plus the resources held by all tj, j < i.

• A safe state is a state in which there is a safe sequence for the
threads.

• An unsafe state is not equivalent to deadlock, it just may lead to
deadlock, since some threads might not actually use the maximum
resources they have declared.

• Grant a resource to a thread is the new state is safe
• If the new state is unsafe, the thread must wait even if the resource

is currently available.
• This algorithm ensures no circular-wait condition exists.

2

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Example
•Threads t1, t2, and t3 are competing for 12 tape drives.

•Currently, 11 drives are allocated to the threads, leaving 1 available.
•The current state is safe (there exists a safe sequence, {t1, t2, t3} where all threads may
obtain their maximum number of resources without waiting)

– t1 can complete with the current resource allocation

– t2 can complete with its current resources, plus all of t1's resources, and the unallocated tape
drive.

– t3 can complete with all its current resources, all of t1 and t2's resources, and the
unallocated tape drive.

max
need

in use could
want

t1 4 3 1
t2 8 4 4
t3 12 4 8

3

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Example (contd)

•If t3 requests one more drive, then it must wait because allocating the drive would
lead to an unsafe state.
•There are now 0 available drives, but each thread might need at least one more
drive.

max
need

in use could
want

t1 4 3 1

t2 8 4 4

t3 12 5 7

4

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Deadlock Avoidance using Resource
Allocation Graph

• Claim edges: an edge from a thread to a resource that may be requested in the
future

• Satisfying a request results in converting a claim edge to an allocation edge and
changing its direction.

• A cycle in this extended resource allocation graph indicates an unsafe state.
• If the allocation would result in an unsafe state, the allocation is denied even if

the resource is available.
– The claim edge is converted to a request edge and the thread waits.

• This solution does not work for multiple instances of the same resource.

5

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Banker's Algorithm
• This algorithm handles multiple instances of the same resource.
• Force threads to provide advance information about what

resources they may need for the duration of the execution.
• The resources requested may not exceed the total available in the

system.
• The algorithm allocates resources to a requesting thread if the

allocation leaves the system in a safe state.
• Otherwise, the thread must wait.

6

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Preventing Deadlock with Banker's Algorithm

class ResourceManager {

 int n; // # threads

 int m; // # resources

 int avail[m], // # of available resources of each type

 max[n,m], // # of each resource that each thread may want

 alloc[n,m], //# of each resource that each thread is using

 need[n,m], // # of resources that each thread might still
request

7

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Banker's Algorithm:Resource Allocation
 public void synchronized allocate (int request[m], int i) {
 // request contains the resources being requested
 // i is the thread making the request

 if (request > need[i]) //vector comparison
 error(); // Can't request more than you declared
 else while (request[i] > avail)
 wait(); // Insufficient resources available

 // enough resources exist to satisfy the requests
 // See if the request would lead to an unsafe state
 avail = avail - request; // vector additions
 alloc[i] = alloc[i] + request;
 need[i] = need[i] - request;

 while (!safeState ()) {
 // if this is an unsafe state, undo the allocation and wait
 <undo the changes to avail, alloc[i], and need[i]>
 wait ();
 <redo the changes to avail, alloc[i], and need[i]>
 } }

8

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Banker's Algorithm: Safety Check
private boolean safeState () {
 boolean work[m] = avail[m]; // accommodate all resources
 boolean finish[n] = false; // none finished yet

 // find a process that can complete its work now
 while (find i such that finish[i] == false
 and need[i] <= work) { // vector operations
 work = work + alloc[i]
 finish[i] = true;
 }

 if (finish[i] == true for all i)
 return true;
 else
 return false;
}

• Worst case: requires O(mn2) operations to determine if the system is
safe.

9

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Example using Banker's Algorithm

System snapshot:

Max Allocation Available

A B C A B C A B C

P0 0 0 1 0 0 1

P1 1 7 5 1 0 0

P2 2 3 5 1 3 5

P3 0 6 5 0 6 3

Total 2 9 9 1 5 2

10

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Example (contd)

•How many resources are there of type (A,B,C)?

•What is the contents of the Need matrix?

•Is the system in a safe state? Why?

A B C
P0

P1

P2

P3

11

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Example: solutions

•How many resources of type (A,B,C)? (3,14,11)
 resources = alloc + avail
•What is the contents of the need matrix?
 Need = Max - Allocation.

•Is the system in a safe state? Why?
•Yes, because the processes can be executed in the sequence P0, P2, P1, P3, even if each
process asks for its maximum number of resources when it executes.

A B C
P0 0 0 0
P1 0 7 5
P2 1 0 0
P3 0 0 2

12

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Example (contd)
•If a request from process P1 arrives for additional resources of (0,5,2), can the
Banker's algorithm grant the request immediately?
•What would be the new system state after the allocation?

•What is a sequence of process execution that satisfies the safety constraint?

Max Allocation Need Available
A B C A B C A B C A B C

P0 0 0 1
P1 1 7 5
P2 2 3 5
P3 0 6 5

Total

13

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Example: solutions
• If a request from process P1 arrives for additional resources of (0,5,2), can the Banker's

algorithm grant the request immediately? Show the system state, and other criteria.
 Yes. Since

1. (0,5,2) ≤ (1,5,2), the Available resources, and
2. (0,5,2) + (1,0,0) = (1,5,2) ≤ (1,7,5), the maximum number P1 can request.
3. The new system state after the allocation is:

and the sequence P0, P2, P1, P3 satisfies the safety constraint.

Allocation Max Available
A B C A B C A B C

P0 0 0 1 0 0 1
P1 1 5 2 1 7 5
P2 1 3 5 2 3 5
P3 0 6 3 0 6 5

1 0 0

14

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Summary
• Deadlock: situation in which a set of threads/processes cannot

proceed because each requires resources held by another member
of the set.

• Detection and recovery: recognize deadlock after it has occurred
and break it.

• Avoidance: don't allocate a resource if it would introduce a cycle.
• Prevention: design resource allocation strategies that guarantee

that one of the necessary conditions never holds
• Code concurrent programs very carefully. This only helps prevent

deadlock over resources managed by the program, not OS
resources.

• Ignore the possibility! (Most OSes use this option!!)

15

Computer Science Lecture 11, page Computer Science

Computing Parable

• The Donkey that starved

16

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Where we are in the course
• Discussed:

– Processes & Threads
– CPU Scheduling
– Synchronization & Deadlock

• Next up:
– Memory Management

• Yet to come:
– File Systems and I/O Storage
– Distributed Systems

17

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Memory Management
• Where is the executing process?

• How do we allow multiple processes to use main memory
simultaneously?

• What is an address and how is one interpreted?

18

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Background: Computer Architecture

• Program executable starts out on disk
• The OS loads the program into memory
• CPU fetches instructions and data from memory while executing

the program

19

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Memory Management: Terminology

• Segment: A chunk of memory assigned to a process.
• Physical Address: a real address in memory
• Virtual Address: an address relative to the start of a process's

address space.

20

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Where do addresses come from?
How do programs generate instruction and data addresses?
• Compile time: The compiler generates the exact physical location

in memory starting from some fixed starting position k. The OS
does nothing.

• Load time: Compiler generates an address, but at load time the
OS determines the process' starting position. Once the process
loads, it does not move in memory.

• Execution time: Compiler generates an address, and OS can place
it any where it wants in memory.

21

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Uniprogramming
• OS gets a fixed part of memory (highest memory in DOS).
• One process executes at a time.
• Process is always loaded starting at address 0.
• Process executes in a contiguous section of memory.
• Compiler can generate physical addresses.
• Maximum address = Memory Size - OS Size
• OS is protected from process by checking addresses used by

process.

22

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Uniprogramming

⇒Simple, but does not allow for overlap of I/O and computation.

23

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Multiple Programs Share Memory
Transparency:

– We want multiple processes to coexist in memory.
– No process should be aware that memory is shared.
– Processes should not care what physical portion of memory they are

assigned to.
Safety:

– Processes must not be able to corrupt each other.
– Processes must not be able to corrupt the OS.

Efficiency:
– Performance of CPU and memory should not be degraded badly due to

sharing.

24

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Relocation

• Put the OS in the highest memory.
• Assume at compile/link time that the process starts at 0 with a maximum

address = memory size - OS size.
• Load a process by allocating a contiguous segment of memory in which the

process fits.
• The first (smallest) physical address of the process is the base address and the

largest physical address the process can access is the limit address.

25

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Relocation
• Static Relocation:

– at load time, the OS adjusts the addresses in a process to reflect its position in
memory.

– Once a process is assigned a place in memory and starts executing it, the OS cannot
move it. (Why?)

• Dynamic Relocation:
– hardware adds relocation register (base) to virtual address to get a physical address;
– hardware compares address with limit register (address must be less than limit).
– If test fails, the processor takes an address trap and ignores the physical address.

26

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Dynamic Relocation
• Advantages:

– OS can easily move a process during execution.
– OS can allow a process to grow over time.
– Simple, fast hardware: two special registers, an add, and a compare.

• Disadvantages:
– Slows down hardware due to the add on every memory reference.
– Can't share memory (such as program text) between processes.
– Process is still limited to physical memory size.
– Degree of multiprogramming is very limited since all memory of all active

processes must fit in memory.
– Complicates memory management.

27

Computer Science Lecture 12, page Computer Science CS377: Operating Systems

Relocation: Properties
• Transparency: processes are largely unaware of sharing.

• Safety: each memory reference is checked.

• Efficiency: memory checks and virtual to physical address
translation are fast as they are done in hardware, BUT if a process
grows, it may have to be moved which is very slow.

28

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Memory Management: Memory Allocation

As processes enter the system, grow, and terminate, the OS must
keep track of which memory is available and utilized.

• Holes: pieces of free memory (shaded above in figure)
• Given a new process, the OS must decide which hole to use for

the process

29

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Memory Allocation Policies
• First-Fit: allocate the first one in the list in which the process fits.

The search can start with the first hole, or where the previous first-
fit search ended.

• Best-Fit: Allocate the smallest hole that is big enough to hold the
process. The OS must search the entire list or store the list sorted
by size hole list.

• Worst-Fit: Allocate the largest hole to the process. Again the OS
must search the entire list or keep the list sorted.

• Simulations show first-fit and best-fit usually yield better storage
utilization than worst-fit; first-fit is generally faster than best-fit.

30

Computer Science Lecture 11, page Computer Science CS377: Operating Systems

Fragmentation
• External Fragmentation

– Frequent loading and unloading programs causes free space to be broken
into little pieces

– External fragmentation exists when there is enough memory to fit a process
in memory, but the space is not contiguous

– 50-percent rule: Simulations show that for every 2N allocated blocks, N
blocks are lost due to fragmentation (i.e., 1/3 of memory space is wasted)

– We want an allocation policy that minimizes wasted space.

• Internal Fragmentation:
– Consider a process of size 8846 bytes and a block of size 8848 bytes
⇒ it is more efficient to allocate the process the entire 8848 block than it is to

keep track of 2 free bytes
– Internal fragmentation exists when memory internal to a partition that is

wasted

31

