
Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Today: Synchronization for Readers/Writers
Problem

• An object is shared among may threads, each belonging to one of
two classes:
– Readers: read data, never modify it
– Writers: read data and modify it

• Using a single lock on the data object is overly restrictive
 => Want many readers reading the object at once

– Allow only one writer at any point
– How do we control access to the object to permit this protocol?

• Correctness criteria:
– Each read or write of the shared data must happen within a critical section.
– Guarantee mutual exclusion for writers.
– Allow multiple readers to execute in the critical section at once.

1

Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Readers/Writers Problem
class ReadWrite {
 public:
 void Read();
 void Write();
 private:
 int readers; // counts readers
 Semaphore mutex; // controls access to readers
 Semaphore wrt; // controls entry to first
} // writer or reader
ReadWrite::ReadWrite {
 readers = 0;
 mutex->value = 1;
 wrt->value = 1;
}

2

Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Readers/Writers Problem
ReadWrite::Write(){
 wrt.wait(); // any writers or readers?
 <perform write>
 wrt.Signal(); // enable others
}
ReadWrite::Read(){
 mutex.Wait(); // ensure mutual exclusion
 readers += 1; // another reader
 if (readers == 1)
 wrt->Wait(); // block writers
 mutex.Signal();
 <perform read>
 mutex.Wait(); // ensure mutual exclusion
 readers -= 1; // reader done
 if (readers == 0)
 wrt.Signal();// enable writers
 mutex.Signal(); }

3

Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Readers/Writers: Scenario 1
R1: R2: W1:
Read ()
 Read ()
 Write ()

4

Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Readers/Writers: Scenario 2
R1: R2: W1:
 Write ()
Read ()
 Read ()

5

Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Reader/Writers: Scenario 3
R1: R2: W1:
Read ()
 Write ()
 Read ()

6

Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Readers/Writers Solution: Discussion
• Implementation notes:

1. The first reader blocks if there is a writer; any other readers who try to
enter block on mutex.

2. The last reader to exit signals a waiting writer.
3. When a writer exits, if there is both a reader and writer waiting, which

goes next depends on the scheduler.
4. If a writer exits and a reader goes next, then all readers that are waiting

will fall through (at least one is waiting on wrt and zero or more can be
waiting on mutex).

5. Does this solution guarantee all threads will make progress?
• Alternative desirable semantics:

– Let a writer enter its critical section as soon as possible.

7

Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Readers/Writers Solution Favoring Writers
ReadWrite::Write(){
 write_mutex.Wait(); // ensure mutual exclusion
 writers += 1; // another pending writer
 if (writers == 1) // block readers
 read_block.Wait();
 write_mutex.Signal();
 write_block.Wait(); // ensure mutual exclusion
 <perform write>
 write_block.Signal();
 write_mutex.Wait(); // ensure mutual exclusion
 writers -= 1; // writer done
 if (writers == 0) // enable readers
 read_block.Signal();
 write_mutex.Signal(); }

8

Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Readers/Writers Solution Favoring Writers
ReadWrite::Read(){
 write_pending->Wait(); // ensures at most one reader will go
 // before a pending write
 read_block->Wait();
 read_mutex->Wait(); // ensure mutual exclusion
 readers += 1; // another reader
 if (readers == 1) // synchronize with writers
 write_block->Wait();
 read_mutex->Signal();
 read_block->Signal();
 write_pending->Signal();
 <perform read>
 read_mutex->Wait(); // ensure mutual exclusion
 readers -= 1; // reader done
 if (readers == 0) // enable writers
 write_block->Signal();
 read_mutex->Signal(); }

9

Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Readers/Writers: Scenario 4

R1: R2: W1: W2:
Read ()
 Read ()
 Write ()
 Write ()

10

Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Readers/Writers: Scenario 5

R1: R2: W1: W2:
 Write ()
Read ()
 Read ()
 Write ()

11

Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Reader/Writers: Scenario 6

R1: R2: W1: W2:
Read ()
 Write ()
 Read ()
 Write ()

12

Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Readers/Writers using Monitors (Java)
class ReaderWriter {
 private int numReaders = 0;
 private int numWriters = 0;

 private synchronized void
prepareToRead () {

 while (numWriters > 0) wait ();
 numReaders++;
 }

13

 private synchronized void
doneReading () {

 numReaders--;
 if (numReaders == 0) notify ();
 }
 public ... someReadMethod () {
 // reads NOT synchronized: multiple

readers
 prepareToRead ();
 <do the reading>
 doneReading ();
 }

Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Readers/Writers using Monitors (Java)
private void prepareToWrite () {
 numWriters++;
 while (numReaders != 0) wait ();
 }
 private void doneWriting () {
 numWriters--;
 notify ();
 }
 public synchronized void someWriteMethod (...) {
 // syncronized => only one writer
 prepareToWrite ();
 <do the writing>
 doneWriting ();
 }
}

14

Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Read/write Locks

• pthreads and Java support read/write locks
– A thread can acquire a read lock or a write lock

• Multiple threads can hold the same read lock concurrently
• Only one thread can hold a write lock
• Java: ReadWriteLock class

– readLock()
– writeLock()

• pthread routines:
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_wrlock()
pthread_rwlock_unlock()
!

15

Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Dining Philosophers
• It’s lunch time in the philosophy dept
• Five philosophers, each either eats or

thinks
• Share a circular table with five

chopsticks
• Thinking: do nothing
• Eating => need two chopsticks, try to

pick up two closest chopsticks
– Block if neighbor has already picked up a

chopstick
• After eating, put down both chopsticks

and go back to thinking

16

Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Dining Philosophers v1

Semaphore chopsticks[5];

do{
 wait(chopstick[i]); // left chopstick
 wait(chopstick[(i+1)%5]); // right chopstick
 // eat
 signal(chopstick[i]); // left chopstick
 signal(chopstick[(i+1)%5]); // right chopstick
 // think
 } while(TRUE);

17

Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Dining Philosophers v2 (monitors)

monitor DP
 {
! enum { THINKING; HUNGRY,
EATING) state [5] ;
! condition self [5];

void synchronized pickup (int i) {
! state[i] = HUNGRY;
! test(i);
! if (state[i] != EATING)
! self [i].wait;
! }
!
void synchronized putdown (int i) {
! state[i] = THINKING;
 //test left and right neighbors
! test((i + 4) % 5);
! test((i + 1) % 5);
 }

void test (int i) {
if ((state[(i + 4) % 5] != EATING)&&
(state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
! state[i] = EATING ;
! ! self[i].signal () ;
 }
}

 initialization_code() {
! for (int i = 0; i < 5; i++)
! state[i] = THINKING;
! }
}

18

Computer Science Lecture 9 page Computer Science

Dining Philosophers (semaphores)

19

Computer Science Lecture 9 page Computer Science

Dining Philosophers (contd)

20

Computer Science Lecture 9 page Computer Science CS377: Operating Systems

Summary
• Readers/writers problem:

– Allow multiple readers to concurrently access a data
– Allow only one writer at a time

• Two possible solutions using semaphores
– Favor readers
– Favor writers

• Starvation is possible in either case!
• Dining philosophers: mutually exclusive access to multiple

resources

21

