CMPSCI 377 Operating Systems Fall 2013

Lecture 7: September 25
Lecturer: Prashant Shenoy Scribe: Armand Halbert

7.1 Synchronization

As we already know, threads must ensure consistency; otherwise, race conditions (non-deterministic results)
might happen.

Now consider the “too much milk problem”: two people share the same fridge and must guarantee that
there’s always milk, but not too much milk. If the two people do not coordinate, it is possible that both will
go to buy milk at once and have too much milk. How can they solve this? First, we consider some important
concepts and their definitions:

e Synchronization: the use of atomic operations to allow coordination between threads (same ideas
work for processes also);

e Mutual Exclusion: ensuring that only one thread is performing a particular action or accessing a
piece of data at a time (and excluding other threads);

e Critical section: a piece of code that only one thread can execute at a time;
e Lock: a mechanism for mutual exclusion; the program locks on entering a critical section, accesses the

shared data, and then unlocks. Any other programs must wait if they try to enter a locked section.

For the above mentioned problem, we want to ensure some correctness properties. First, we want to guarantee
that only one person buys milk when it is needed (this is the safety property, aka “nothing bad happens”).
Also, we want to ensure the liveness property — that someone does buy milk when needed. Now consider
that we can use the following atomic operations when writing the code for the problem:

e “leave a note” (equivalent to a lock)

e “remove a note” (equivalent to a unlock)

e “don’t buy milk if there’s a note” (equivalent to a wait)
Our first try could be to use the following code on both threads:

if (no milk and no note)
leave note
buy milk
remove note

Unfortunately, this doesn’t work because both threads could simultaneously verify that there’s no note and
no milk, and then both would simultaneously leave a note, and buy more milk. The problem in this case is
that we end up with too much milk (safety property not met).

7-1

Now consider our solution #2 using labelled notes:

Thread A:

leave note "A"
if (no note "B")
if (no milk)
buy milk
remove note "A"

Thread B:

leave note "B"
if (no note "A")
if (no milk)
buy milk
remove note "B"

Lecture 7: September 25

The problem now is that if both threads leave notes at the same time, neither will ever do anything. Then,

we end up with no milk at all, which means that the liveness property is not met.

7.2 Concurrency

When programming with threads, processes or with any type of program that has to deal with shared data,
we have to take into account all possible interleaving of these processes. In other words, in order to guarantee
that concurrent processes are correct, we have to somehow guarantee that they generate the correct solution

no matter how they are interleaved.

;From the “Too Much Milk” problem it is clear that it can be very difficult to come up with an approach

that always solves it properly. Let us now consider an approach that does work:

Thread A

leave note A
while (note B)
do nothing
if (no milk)
buy milk
remove note A

Thread B

leave note B
if (no note A)
if (no milk)
buy milk

remove note B

Lecture 7: September 25 7-3

This approach, unlike the two previous examples, does work. However, it is not easy to be convinced that
these two algorithms, when taken together, always produce the desired behavior. Moreover, these pieces of
code have some drawbacks: first, notice that Thread A goes into a loop waiting for B to release its note.
This is called “busy waiting”, and is generally not a good idea because Thread A wastes a lot of CPU, and
because it can’t execute anything useful while B is not done. Also, notice that even though both threads try
to perform the exact same thing, they do it in very different ways. This is a problem specially when we were
to write, say, a third thread. This third thread would probably look very different than both A and B, and
this type of asymmetric code does not scale very well. So the question is: how can we guarantee correctness
and at the same time avoid all these drawbacks? The answer is that we can augment the programming
language with high-level constructs capable of solving synchronization problems. Currently, the best known
constructs used in order to deal with concurrency problems are locks, semaphores, monitors.

7.2.1 Locks/Mutex

Locks (also known as Mutexes) provide mutual exclusion to shared data inside a critical section. They are
implemented by means of two atomic routines: acquire, which waits for a lock, and takes it when possible;
and release, which unlocks the lock and wakes up the waiters. The rules for using locks/mutex are the
following:

1. only one person can have the lock at a time;
2. locks must be acquired before accessing shared data;
3. locks must be released after use;

4. locks are initially released.

Let us now try to rewrite the “Too Much Milk” problem in a cleaner and more symmetric way, using locks.
In order to do so, the code for Thread A (and also for Thread B) has to be the following:

lock.acquire()

if (no milk)
buy milk

lock.release()

This is clearly much easier to understand than the previous solutions; also, it is more scalable, since all
threads are implemented in the exact same way.

7.3 Implementing Locks

To implement a lock, the OS needs a way to ensure that a process will be able to run a critical section where
it can access some shared data without another process modifying the data at the same time. No matter
how an OS chooses to implement locks, it must have some hardware support.

One way to implement locks is to disable interrupts, since interrupts are the only way the OS has to change
what it is doing. Normally, a process in an operating system will continue running unless it either performs
an I/O request or it is interrupted by the operating system through the use of an interrupt—for example
because it’s scheduling time quantum has run out or due to some kind of exception. By disabling interrupts,

7-4 Lecture 7: September 25

we can ensure that a process will maintain control of the CPU and guarantee that only one process (the
active one) will have access to the shared data. Disabling interrupts will prevent any external events from
causing the process to lose control of the CPU. In addition, the process must prevent internal events as well;
this is typically done by not initiating an I/O request while in a critical section.

Another option for implementing locks would be to make use of atomic operations, such as test&set. This
operation (which usually corresponds to an assembly instruction), is such that test&set(x) returns 1, if x=1;
otherwise, if x=0, it returns 0 and sets x to 1. The test$set operation is called an atomic read-modify-write
instruction because it reads a value (which is returned) and writes a new value without being able to be
interrupted by the OS scheduler. Each of these operations must be implemented atomically by the hardware.
Having this type of atomic operation, one could implement acquire(L) simply as

while test&set(L) do nothing;
and release(L) simply as
1= 0;

A lock implementation can either use busy waiting or wait queues. In busy waiting, when a thread calls
acquire(), it will continuously check the lock to see when it becomes available again. While this is simple
to implement, it can be inefficient because the thread is using CPU time to constantly check a lock which
another thread has control of. An alternative is to use wait queues. In this case, when a thread calls acquire(),
if some other thread has the lock, then it is placed on a wait queue. This is a list of threads which are all
waiting for the lock to become available. These threads will not be scheduled until the thread currently
using the lock calls release() and they are woken up. This is a more efficient approach, that tries to minimize
busy waiting to inside the acquire() function (which will execute quickly).

