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4.1 Process State

4.1.1 Process

A process is a dynamic instance of a computer program that is being sequentially executed by a computer
system that has the ability to run several computer programs concurrently. A computer program itself is
just a passive collection of instructions, while a process is the actual execution of those instructions. Several
processes may be associated with the same program; for example, opening up several windows of the same
program typically means more than one process is being executed. The state of a process consists of - code
for the running program (text segment), its static data, its heap and the heap pointer (HP) where dynamic
data is kept, program counter (PC), stack and the stack pointer (SP), value of CPU registers, set of OS
resources in use (list of open files etc.), and the current process execution state (new, ready, running etc.).
Some state may be stored in registers, such as the program counter.

4.1.2 Process Execution States

Processes go through various process states which determine how the process is handled by the operating
system kernel. The specific implementations of these states vary in different operating systems, and the
names of these states are not standardised, but the general high-level functionality is the same.

When a process is first started/created, it is in new state. It needs to wait for the process scheduler (of the
operating system) to set its status to ”new” and load it into main memory from secondary storage device
(such as a hard disk or a CD-ROM). Once it is loaded into memory it enters the ready state. Once the process
has been assigned to a processor by the OS scheduler, a context switch is performed (loading the process
into the processor) and the process state is set to running - where the processor executes its instructions.

If a process needs to wait for a resource (such as waiting for user input, I/O, or waiting for a file to become
available), it is moved into the waiting state until it no longer needs to wait - then it is moved back into
the ready state. The ready state means that the process is ready to run, but some other process is already
running. A process may also transition from the running state to the ready state due to a context switch
(the OS has scheduled another process even though the current process hasn’t finished). Once the process
finishes execution, or is terminated by the operating system, it is moved to the terminated state where it
waits to be removed from main memory. The OS manages multiple active process using state queues.

4.1.3 Process Control Block

A Process Control Block is a data structure in the operating system kernel containing the information needed
to manage a particular process. A PCB is created in the kernel whenever a new process is started. The OS
maintains a queue of PCBs, one for each process running in the system. A PCB will include: the identifier
of the process (a process identifier, or PID); register values for the process including the program counter;
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the address space for the process; scheduling information such as priority, process accounting information
such as when the process was last run, how much CPU time it has accumulated, etc; pointer to the next
PCB i.e. pointer to the PCB of the next process to run; I/O Information (i.e. I/O devices allocated to this
process, list of opened files, etc). Since the PCB contains the critical information for the process, it must be
kept in an area of memory protected from normal user access. In some operating systems the PCB is placed
in the beginning of the kernel stack of the process since that is a convenient protected location. The PCB is
maintained for a process throughout its lifetime, and is deleted once the process terminates.

4.1.4 Process State Queues

The OS maintains the PCBs of all processes in state queues. The OS maintains a queue for each of the states
described in Section 4.1.2. PCBs of all processes in the same execution state are placed in the same queue.
When the state of a process is changed, its PCB is unlinked from its current queue and moved to its new
state queue. The queue for each state is unbounded in length except for the run queue. The run queue’s
length is always less than or equal to the number of processor in the system.

Some queues such as the wait or ready queues may control many PCB entries. The OS can use different
policies to manage each queue (FIFO, Round Robin, Priority etc). Each I/O device has its own wait queue.
The run queue, however, can only have one entry per processor core on the system (since each core can only
run a single process at a time). The OS scheduler determines how to move processes between the ready and
run queues.

4.2 Process Management

4.2.1 Context Switch

A context switch is the step required to move a process between the run and ready queues. The context
switch is an essential feature of a multitasking operating system so that multiple processes can share a single
CPU resource. In a context switch, the state of the first process must be saved so that when the scheduler
gets back to the execution of the first process, it can restore this state and continue. The state of the process
includes all the registers that the process may be using, especially the program counter, plus any other
operating system specific data that may be necessary. The state from the running process is stored into the
process control block. After this completes, the state for the process to run next is loaded from its own PCB
and used to set the PC, registers, etc. At that point, the second process can begin executing.

Context switches are computationally intensive since register and memory state must be saved and restored.
Much of the design of operating systems is to optimize the use of context switches since they can occur 10 to
1000 times per second in modern operating systems. Context switches occur when processes change to the
wait queue for I/O, due to interrupt handling, and for user and kernel mode switching. In some systems a
context switch occurs after the current running process has run for some pre-defined amount of time (called
a quantum). If the process hasn’t finished and hasn’t started some I/O then after the quantum is up, the
OS does a context switch to another process. A quantum is typically a few milliseconds to a few hundred
milliseconds (Linux uses around 200ms). The context switch can take on the order of 100 microseconds

4.2.2 Creating a Process: fork System Call

A process can create other processes to do work. All processes are created by some other process; each
process is considered to have a single parent, and it may have several children if it creates multiple processes.
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The first process on a Unix/Linux system is the Init process. This process starts up during the boot process
and initiates various system daemons and eventually the login process. When you subsequently log into a
system, you are connected to a shell process which will in turn spawn additional processes for each command
you run.

In computing, when a process forks, it creates a copy of itself, which is called a ”child process”. The original
process is then called the ”parent process”. The pstree command in Linux can be used to see the process
hierarchy. More generally, a fork in a multithreading environment means that a thread of execution is
duplicated, creating a child thread from the parent thread. Under Unix and Unix-like operating systems,
the parent and the child processes can tell each other apart by examining the return value of the fork()
system call. In the child process, the return value of fork() is 0, whereas the return value in the parent
process is the PID of the newly-created child process. The fork operation creates a separate address space
for the child. The child process has an exact copy of all the memory segments of the parent process, though if
copy-on-write semantics are implemented actual physical memory may not be assigned (i.e., both processes
may share the same physical memory segments for a while). Both the parent and child processes possess
the same code segments, but execute independently of each other. The child process usually calls the exec
function to allow it to start a new application or function. The exec functions of Unix-like operating systems
are a collection of functions that causes the running process to be completely replaced by the program passed
as an argument to the function. As a new process is not created, the process ID (PID) does not change,
but the data, heap and stack of the calling process are replaced by those of the new process. In the execl,
execlp, execv, and execvp calls, the child process inherits the parent’s environment. The parent process, after
creating the child process, may issue a wait system call, which suspends the execution of the parent process
while the child executes. When the child process terminates, it returns an exit status to the operating
system, which is then returned to the waiting parent process. The parent process then resumes execution.

4.2.3 Process Termination

On process termination, OS reclaims all resources assigned to the process. In Unix, a process can terminate
itself using the exit system call. Alternatively, a process can terminate another process (if it has the privilege
to do so) using the kill system call. Note that if a process is killed, its child processes may or may not be
killed. If they are not, then they will be assigned a new parent process, either a “grand parent” or the Init
process.

4.2.4 Cooperating Processes

Cooperating processes work with each other to accomplish a single task. This may improve performance
by overlapping activities or performing work in parallel. It can enable an application to achieve a better
program structure as a set of cooperating processes, where each is smaller than a single monolithic program.

Distributed systems are examples of cooperating processes in action. Modern web browsers such as Google
Chrome also use cooperating processes to allow different windows or tabs to be isolated from one another
for stability and security reasons. In computer science, the producer-consumer problem (also known as the
bounded-buffer problem) is a classical example of a multi-process synchronization problem. The problem
describes two processes, the producer and the consumer, who share a common, fixed-size buffer. The
producer’s job is to generate a piece of data, put it into the buffer and start again. At the same time the
consumer is consuming the data (i.e. removing it from the buffer) one piece at a time. The problem is to
make sure that the producer won’t try to add data into the buffer if it’s full and that the consumer won’t
try to remove data from an empty buffer. To effectively solve the producer-consumer problem, the processes
can use either shared memory or interprocess communication to coordinate.
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4.2.5 Process Communication

Message passing is very much like e-mail. One process will use a send system call to send a message to
another process. The other process uses a receive system call to recieve the message. Each process needs
to be able to name the other processes that it would like to communicate with. The OS is responsible for
keeping track of all of the messages (copying, notifying, etc.). Distributed systems generally will use message
passing to communicate.

Shared memory is another process communication method that establishes a mapping between process
address space and a named memory object. This named memory object can then be shared by multiple
processes. The system call mmap is used to create the memory object. A typically example usage would be
a process creating a shared memory object with mmap then using fork to create other processes that will
share the data structure. The processes involved still need to do some sort of synchronization to regulate
reading and writing to the shared memory.

4.2.6 Synchronization Example

Alice and Bob open a shared bank account. Their initial balance is $0. Each deposit $100. We would expect
that the balance now be $200. Consider the following sequence of operations:
(1)Alice reads Balance (she reads $0),
(2)Alice calculates new balance: Balance + 100 = $100,
(3)Bob reads Balance (He also reads $0, as Alice has not yet written the new Balance),
(4)Bob calculates new balance: Balance + 100 = $100,
(5)Alice writes Balance (she writes $100),
(6)Bob writes Balance (he also writes $100).

This sequence leads to the final balance being $100 (which is incorrect). If we consider Alice and Bob to
be processes running within an operating system, this can occur if the scheduling of the two processes is
interleaved. This example clearly illustrates the importance of synchronization between Alice’s and Bob’s
processes. Synchronization is a feature that the OS can provide to allow multiple processes to coordinate
their activities to ensure that applications with multiple processes behave as they are intended by controlling
how they are scheduled and are able to manipulate data. For example, the OS could enforce the following
sequence which would produce correct results:
(1)Alice reads $0,
(2)Alice increments,
(3)Alice writes $100,
(4)Bob reads $100,
(5)Bob increments,
(6)Bob writes $200.

There may be other sequences of reads and writes that would produce correct results.

4.3 Memory and Secondary Storage Management

Main memory is the only one directly accessible to the CPU. The CPU continuously reads instructions stored
there and executes them. Any data actively operated on is also stored there in uniform manner.

The OS is responsible for allocating/deallocating memory space for processes. When a process is created, the
OS grants it a region of memory, and the process may request additional memory as it runs. The OS provides
the illusion of infinite memory to each process with the use of virtual memory. The OS must maintain the
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mappings from virtual to physical memory (which are stored in a data structure called a page table). It also
decides how much memory to allocate to each process, and when a process should be removed from memory.

If memory becomes a limited resource, then the OS’s virtual memory system may move process data from
main memory to secondary storage (disk). Data stored to disk differs from main memory in that it is not
directly accessible by the CPU and is significantly slower to read or write from. The operating system
is responsible for transparently moving portions of a process’s memory state between main memory and
secondary storage.

4.4 The File System

Secondary storage devices, such as hard disks, are not directly used for storage. A file system is generally
used as a method for storing and organizing computer files and the data they contain to make it easy to find
and access them. File systems are mainly used for persistent storage devices. Unlike data stored in memory,
data stored into a file system backed by a persistent storage device will remain accessible after the system is
turned off and on. File systems use storage devices such as hard disks or CD-ROMs to persist the data.

There are many different file systems in use today such as NTFS in Windows, EXT3 in Linux, or ZFS in
Solaris. All of these file systems provide the abstraction of logical entities (files) to store data, and a directory
structure to control where files are located. However, each file system may save the data to disk in different
ways by varying the disk block size or layout.

The most familiar file systems make use of an underlying data storage device that offers access to an array
of fixed-size blocks, sometimes called sectors, generally a power of 2 in size (512 bytes or 1, 2, or 4 KB are
most common). The file system software is responsible for organizing these sectors into files and directories,
and keeping track of which sectors belong to which file and which are not being used. File systems typically
have directories which associate file names with files, usually by connecting the file name to an index in a file
allocation table of some sort, such as the FAT in a DOS file system, or an inode in a Unix-like file system.
File system provides a standard interface to create, delete and manipulate (read, write, extend, rename,
copy, protect) files and directories. It also provides general services such as backups, maintaining mapping
information, accounting, and quotas.

The OS is responsible for various low-level disk functions. It is necessary for the OS to schedule disk
operations, manage the disk head movement, and provide error handling. Some file system functions can
be provided by the OS rather than the file system itself. For example, managing the amount of free space
might be the responsibility of the OS or the file system depending on the system configuration.

4.5 I/O Systems

The I/O system supports communication with external devices, like terminal, printer, keyboard, mouse etc.
It also supports buffering and spooling of I/O. Spooling refers to a process of transferring data by placing
it in a temporary working area where another program may access it for processing at a later point in time.
The OS provides a common system for buffering and spooling which can be used by the specific device
drivers created for individual I/O devices.

The I/O system provides a general interface, hiding the differences among devices. In Linux, all devices are
presented mimicking a file system interface. This can simplify interaction with I/O devices because familiar,
file based access methods such as open, read, and write can be used to communicate with the device.
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4.6 Distributed Systems

Distributed systems deals with hardware and software systems containing more than one processing or storage
element, concurrent processes, or multiple programs, running under a loosely or tightly controlled regime.
In distributed computing a program is split up into parts that run simultaneously on multiple computers
communicating over a network. Distributed programs often must deal with heterogeneous environments,
network links of varying latencies, and unpredictable failures in the network or the computers. The OS can
support a distributed file system on a distributed system. There are many different types of distributed
computing systems and many challenges to overcome in successfully designing one. The main goal of a
distributed computing system is to connect users and resources in a transparent, open, and scalable way.
Ideally this arrangement is more fault tolerant and more powerful than using stand-alone computer systems.

Examples of distributed systems include networked file systems, many web applications such as Facebook or
twitter, or an instant messaging system. Distributed systems can be built using low level socket communi-
cation or higher level abstractions such as remote procedure calls.


