
CMPSCI 377 Operating Systems Fall 2012

Lecture 21: November 27
Lecturer: Prashant Shenoy TA: Sean Barker & Demetre Lavigne

21.1 Network Topologies

21.1.1 Point-to-Point Topologies

The topology of a network is defined by how the links between nodes are created. In a fully connected
network, all nodes are connected to all other nodes. This provides the benefit that any node can reach any
other in only “one hop”, and that the system is resilient to failures since one node crashing will not cause
any other node to become disconnected from the rest. However, this can become expensive when there is
a large number of nodes, and is not practical for WAN environments where there can be huge numbers of
nodes spread across wide distances.

A partially connected network loosens these requirements by only using links between a subset of the
nodes. As a result, a message sent between two nodes may need to be directed through several other nodes
along the path, requiring some sort of routing algorithm for coordination and increasing transmission times.
This also makes this type of network less resilient to node failures. However, since this is significantly less
expensive than a fully connected network, it is often used for WANs.

Another network topology is a tree structure. In this case, a root node is created, and all others connected
to its children or their descendants. This provides a simple structure that often matches the logical hierarchy
of an enterprise, but it can lead to slow performance since messages may have to pass up through multiple
nodes to find a common ancestor for their intended recipient. Trees are also not resilient to failure, since
one node failing causes all of its descendants to become disconnected from the root.

A star topology makes all nodes be directly connected to a single centralized node. This uses much fewer
links than a fully connected network, but still allows all nodes to communicate within two hops. However,
the central node is a single point of failure and can lead to the full network becoming disconnected.

21.1.2 Ring & Bus Topologies

Another class of topologies is a ring network—these topologies are very simple, but their restrictive structure
can produce more predictable behavior. In a simple one directional ring, a node can only send messages in
one direction, leading to a maximum message delay of n−1 hops in a network with n nodes. A one direction
ring network will get partitioned by a single node failure. Allowing messages to travel in both directions
reduces the maximum delay to n/2 hops, but the system can only tolerate one failure by increasing the
number of hops.

A ring network can be created with additional links in order to gradually increase the level of connectivity.
A double connected ring is one where each node is connected to its immediate neighbours, as well as the
nodes two hops away. This allows messages to hop through the network more quickly, giving a maximum
delay of n/4 hops and increasing the resilience to failure. Further increasing the number of links provides
better performance and reliability at greater expense. Note that a ring network with links to all nodes is
simply a fully connected point-to-point network.

21-1



21-2 Lecture 21: November 27

A bus network relies on special links that can be shared by multiple nodes. For example, multiple com-
ponents within a single computer communicating over the shared system bus can be considered a form of
distributed system. A linear bus simply has multiple nodes connected to one bus that supports multiple
access. This is inexpensive, but nodes may need to coordinate to ensure that only a single node uses the
bus at any one time. Ethernet LAN links use this structure. A ring bus is the same as a linear bus but it
“loops” around.

21.2 Distributed File Systems

A distributed file system is one of the most common types of distributed system. It is very common for a
large number of computers to want to be able to have shared access to some set of data or program files. A
distributed file system provides this by giving the abstraction that a shared disk appears to be attached to
each node in the system, even though in reality it is only physically attached to one or more server nodes.
This is commonly used in educational computer labs where users want access to their files regardless of which
specific computer they log in to.

21.2.1 Naming and Transparency

In order to be useful, users must be able to address (or name) the shared files they would like to access.
Different distributed file systems support naming in different ways. Some systems provide location trans-
parency, which states that the knowing the name of a file does not reveal its physical storage location.
This can be desirable for security reasons if administrators do not want users to necessarily know exactly
where different files are stored. This can also produce a simpler system because it means that users do not
need to know the exact storage location, either. Location independence says that even if a file is moved
between physical storage locations, its name will still remain valid. This can be beneficial since users do not
need to repeatedly look up where a file is located even if it is moved between disk drives. In practice, many
distributed file systems support location transparency, but few provide location independence.

21.2.2 Naming Strategies

An absolute name is one which provides a complete address to a file including both the server and path
names. This has the advantage that it is trivial to find a file once the name is given since it contains complete
information. This means that no additional state must be kept since each name is self contained, which can
lead to greater scalability. However, users must know the complete name of the server and path to files they
want to access and because of the naming convention there is a clear difference between local and remote files.
This limits transparency since users must deal with local and remote files differently, and makes it harder
to changes such as when a file moves between hosts. This can also make the system less resilient to failure
since there is no abstraction layer which could re-map addresses (names) if one server failed but another
contained the same data. This technique is used in operating systems such as Windows and AppleShare.

An alternative approach is to use mount points. In this case, the client machine creates a set of “local
names” which are used to refer to remote locations. These names are called mount points because the remote
files or directories are connected and attached to the local file system. The operating system must maintain
a table (such as /etc/fstab in Linux) to maintain the mapping of what server and path are mapped to each
mount point. When the system boots up, it scans through the table and connects to each remote server. It
then translates any file accesses to the mount point into network calls which are transferred to the remote
file system. This provides location transparency described previously, because once the mapping is made,



Lecture 21: November 27 21-3

the local client does not need to know or care that the files it is using are actually located across the network.
This allows the remote server to be changed without affecting the local file name mappings, although the
system may need to be restarted to acknowledge the change. The main disadvantage of using mount points
is that it can lead to confusion since two different local names may actually map to the same file on a remote
system. This approach is commonly used in Linux and Sun operating systems.

A third option for naming is to use a global name space. In this case, all nodes within the system have an
identical name space—the path and name of a file on one machine will be the same on every other machine,
regardless of where the file is actually stored. This is typically implemented using a set of dedicated file
servers that store all files for the system. When a client boots up, it contacts one of the file servers and
receives the layout of the distributed file system. When a user accesses a file, the server sends a copy of it to
the client machine where it is cached. As the client updates the files, the changes must be written back to
the central file servers. The advantage of this approach is that naming is consistent across all clients. Also,
the storage servers are able to seamlessly move files around because clients always contact the server to learn
where files are located within the global name space. However, the fact that files are cached by clients can
lead to challenges in keeping file content consistent across all nodes. Enforcing a global name space across
all nodes also limits flexibility, and can lead to performance problems, particularly when the scale of the
system grows. Examples of global name space systems include: CMU’s Andrew, Berkeley’s Sprite, and the
web.

21.2.3 Remote File Access and Caching

When a client wants to modify a file contained in a distributed file system, it can perform all operations
remotely, or use local caching. In the first case, the client sends the server an operation such as a write call,
and the server performs the write and returns a result (often this is done using RPC). Alternatively, when
a write is to be performed, the server can send the file (or part of the file) back to the client so that it can
make the changes locally; this results in the client building up a local cache of files which it is working with.

If caching is used, then the distributed system faces additional challenges since it must figure out how to
propagate changes back to the server after they have been made. This is especially complicated when multiple
clients may be accessing the same file—the system must preserve consistency so that one clients actions do
not conflict with those made by another.

A second challenge is deciding whether clients should keep its cache in memory or on its local disk. Using
the local disk is significantly faster than making accesses over the network, but it is still much slower than
keeping the file in memory. However, the disk is a persistent store, so it can provide greater reliability in
the case that the node fails before writing its changes back to the file server. Of course, writing to disk also
requires that the client has a disk, which is not always the case in “thin client” systems. Alternatively, the
files can be cached in memory, but while this provides greater speed, it is less reliable and results in a more
limited cache size.

21.2.4 Cache Update Policy

A cache update policy defines when writes made to a cache should be propagated back to the original disk.
Using a write through policy provides high reliability since writes are immediately written to the server.
However, the user will see reduced performance because all writes not only need to be made to the local
disk, but transmitted over the network and acknowledged by the server. As a result, the cache provides no
benefit for write requests (identical to doing all writes remotely), but it can still improve performance for
reads.



21-4 Lecture 21: November 27

In a write back policy, writes to the remote server are delayed until some event occurs such as the file
being closed, the block being removed from the cache, or some set delay. This leads to better performance
because writes can be queued up and done asynchronously as the local program continues executing. This
can also reduce network traffic by exploiting the fact that a single block may be written and overwritten
multiple times in a short window—with a write back policy, these changes can be aggregated into a single
write which is sent to the server. Unfortunately, write back cannot provide the same reliability guarantees
as write through since the node may crash or lose power before the write is sent back to the file server.

Cache Consistency is another important issue that determines how caches are maintained when multiple
clients may be accessing the same file. In a client-initiated consistency system, the client is responsible
for checking with the server to verify that each file in its cache is consistent (e.g. that no one else has
modified the file since it was cached). Depending on the level of consistency required, the client could verify
that its cache is consistent on every access, at a given interval, or only when the file is first opened. This is
a relatively simple protocol to implement, but it requires the servers to trust that clients will indeed verify
that their caches are correct—a single corrupt or malicious client could disrupt the complete system.

In server-initiated consistency, the server acts as a central authority over which clients have up to date
or invalid caches. In this case, the server must track information about all clients that have cached a file
so it knows which parts of which files are currently cached, as well as whether a given client is reading or
writing to a file. Using this information, the server is able to detect when reading and writing clients might
conflict with each other, and will send messages to clients to force them to invalidate their cache entries and
request them again.


