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8.1 Semaphores

A semaphore is a more generalized form of a lock that can be used to regulate traffic in a critical section or
to order code execution. They were invented by the renown computer scientist Edsger Dijkstra in 1965 (read
about him at http://en.wikipedia.org/wiki/Edsger_W._Dijkstra). Even though a semaphore is more
generalized than a lock, they are not more powerful (just more flexible). A semaphore is implemented as an
integer variable with atomic increment and decrement operations; so long as the value is not negative the
thread will continue, it will block otherwise. The increment operation is called P, or signal ; the decrement
is called V, or wait :

• Semaphore.wait(): decreases the counter by one; if the counter is negative, then it puts the thread on
a queue and blocks.

• Semaphore.signal(): increments the counter; wakes up one waiting process.

Binary Semaphore: A binary semaphore is initialized as free (1) and can vary from 0 to 1. This semaphore
is essentially the same as a lock. It also guarantees that only one process will be in a critical section at a
time.

Counting Semaphore: A counting semaphore can be considered as a pool of permits. A thread used
wait operation to request a permit. If the pool is empty, the thread waits until a permit becomes available.
A thread uses signal operation to return a permit to the pool. A counting semaphore can take any initial
value. These can be used to manage multiple resources and they are typically initialized to the number of
resources.

Notice that we can use semaphores to implement both locks and ordering constraints. For example, by
initializing a semaphore to 1, threads can wait for an event to occur:

thread A

// wait for thread B

sem.wait()

// do stuff

thread B

// do stuff, then wake up A

sem.signal()

8.1.1 Implementing Signal and Wait

The signal and wait operations of a semaphore can be implemented as follows.
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class Semaphore {

public:

void Wait(Process P);

void Signal();

private:

int value;

Queue Q; // queue of processes;

}

Semaphore::Semaphore(int val) {

value = val;

Q = empty;

}

Semaphore::Wait(Process P) {

value = value - 1;

if (value < 0) {

add P to Q;

P->block();

}

}

Semaphore::Signal() {

value = value + 1;

if (value <= 0){

remove P from Q;

wakeup(P);

}

}

8.1.2 Using Semaphores

Semaphores can be used to implement critical sections or to enforce certain scheduling constraints. Critical
sections are typically built by using semaphores that are initialized to 1. In this case, one process can call
wait() in order to enter the critical section, preventing any other processes from passing the wait condition.
Once the process finishes the critical section, it calls signal() which will allow the next process to enter the
critical section. In some cases, it is useful to start the semaphore with a value greater than 1. This allows
multiple processes to enter the critical section at once. While this can be a problem if the critical section is
supposed to be protecting data, it can be useful in other cases such as where a limited number of resources
are available for simultaneous use, such as in the Multiple Consumers and Producers Problem.

Multiple Consumers and Producers Problem: The Multiple Consumers and Producers Problem is
when we have multiple threads producing items and multiple threads consuming items. If this is implemented
with the shared data being in some sort of bounded buffer, then it is necessary to ensure certain orderings.
If all of the bounded buffer is full, then the producers need to be blocked until atleast one consumer runs.
The reverse condition also needs to hold: if the buffer is empty, then none of the consumers should run until
atleast one producer runs. These ordering can be ensured using two semaphores and the buffer should be
protected by a mutex.

Semaphores can also be used for scheduling constraints by initializing the semaphore to 0 and only incre-
menting it once a certain condition is met. This will cause all processes to initially block during their wait
calls. Only once the condition is met will signal be called, allowing one of the waiting processes to continue
execution. An example use case of this is for implementing the waitpid() function which causes a process
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to wait until another process exits. By setting the semaphore to 0 initially, any process that calls waitpid
would enter a waiting state. Once the process being waited on completes, the signal() call could be made,
causing the waiting processes to wake up.

8.2 Monitors

While semaphores can be a powerful synchronization mechanism, they have some drawbacks which make
them difficult to use in practice. Semaphores are a low level mechanism, and improperly placed signal and
wait calls can lead to incorrect behavior. Additionally, semaphores are a global data structure which are
not explicitly tied to a critical section–they can be called from any thread at any point in the program.
Semaphores also try to solve two problems (mutual exclusion and ordering) with the same device. These
characteristics can cause semaphores to be difficult to use, and improper usage can easily lead to bugs.

A monitor is a higher level synchronization mechanism that tries to resolve some of these issues. A monitor
can be viewed as a class that encapsulates a set of shared data (declared as private) as well as the operations
on that data (e.g. the critical sections). The monitor is implemented in such a way so as to guarantee mutual
exclusion–only one thread calling a method in the monitor class can run at a time. We consider a thread to
be “in a monitor” if it has acquired control of the monitor; the monitor automatically ensures that only one
thread can be in the monitor at a time.

A monitor contains a lock and a set of condition variables. The lock is used to enforce mutual exclusion.
The condition variables are used as wait queues so that other threads can sleep while the lock is held. Thus
condition variables make it so that if a thread can safely go to sleep and be guaranteed that when they
wake up they will have control of the lock again. In Java, monitors can be used by adding the synchronized
keyword to a method declaration. This will make it so that only one thread can execute the method at
a time. This eliminates the need to manually acquire and release locks or call semaphore operations–the
mutual exclusion is provided through the monitor system.

8.3 Condition Variables

A thread in a monitor may have to block itself so it can wait for an event, but this can cause a problem
since the thread has already acquired the monitor lock–if it were to go to sleep, no other thread could
enter the monitor. To allow a thread to wait for an event (e.g., I/O completion) without holding on to the
lock, condition variables are used. If a thread must wait for an event to occur, that thread waits on the
corresponding condition variable. If another thread causes an event to occur, that thread simply signals the
corresponding condition variable. Thus, a condition variable has a queue for those threads that are waiting
for the corresponding event to occur. Each monitor may have multiple condition variables.

8.3.1 Condition Variable Operations: Wait and Signal

There are two operations that can be applied to a condition variable: wait and signal, which are similar
to the semaphore calls. It is important that a thread must hold the lock when using these operations.
When a thread executes a wait call on a condition variable, it is immediately suspended and put into the
waiting queue of that condition variable. Thus, this thread is suspended and is waiting for the event that is
represented by the condition variable to occur. Because the calling thread is the only thread that is running
in the monitor, it ”owns” the monitor lock. When it is put into the waiting queue of a condition variable, the
system will automatically take the monitor lock back. As a result, the monitor becomes empty and another
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thread can enter. Eventually, a thread will cause the event to occur. To indicate a particular event occurs,
a thread calls the signal method on the corresponding condition variable. At this point, we have two cases
to consider. First, if there are threads waiting on the signalled condition variable, the monitor will allow one
of the waiting threads to resume its execution and give this thread the monitor lock back. Second, if there
is no waiting thread on the signalled condition variable, this signal is lost as if it never occurs.

There is a third operation Broadcast() that wakes up all waiting threads in the queue, instead of just one.


