

Inside a Data Center

- Giant warehouse filled with:
- Racks of servers
- Storage arrays
- Cooling infrastructure
- Power converters
- Backup generators

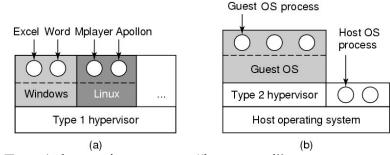
MGHPCC Data Center

Modular Data Center

- ... or use shipping containers
- Each container filled with thousands of servers
- Can easily add new containers
 - "Plug and play"
 - -Just add electricity
- Allows data center to be easily expanded
- Pre-assembled, cheaper

Virtualization

- Virtualization: extend or replace an existing interface to mimic the behavior of another system.
 - Introduced in 1970s: run legacy software on newer mainframe hardware
- Handle platform diversity by running apps in VMs Portability and flexibility



Types of Interfaces Application Library functions Library System calls Operating syster Privileged General instructions instructions Hardware • Different types of interfaces -Assembly instructions - System calls -APIs • Depending on what is replaced /mimiced, we obtain different forms of virtualization

• Emulation (Bochs), OS level, application level (Java, Rosetta, Wine)

```
Computer Science
```

Types of OS-level Virtualization

- Type 1: hypervisor runs on "bare metal"
- Type 2: hypervisor runs on a host OS - Guest OS runs inside hypervisor
- Both VM types act like real hardware

mputer Science

Lecture 22, page 7

Server Virtualization

- Allows a server to be "sliced" into Virtual Machines
- VM has own OS/applications
- Rapidly adjust resource allocation

• VM migration within a LAN

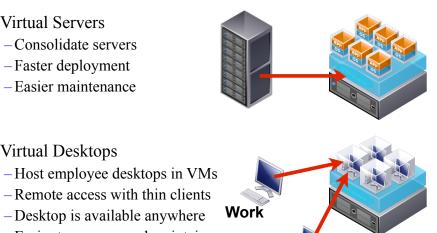
Data Center Challenges

- Resource management
 - -How to efficiently use server and storage resources?
 - -Many apps have variable, unpredictable workloads
 - -Want high performance and low cost
 - -Automated resource management
 - -Performance profiling and prediction

• Energy Efficiency

- Servers consume huge amounts of energy
- Want to be "green"
- Want to save money

```
omputer Science
```



Virtualization in Data Centers

- Virtual Servers
 - Consolidate servers
 - -Faster deployment

Virtual Desktops

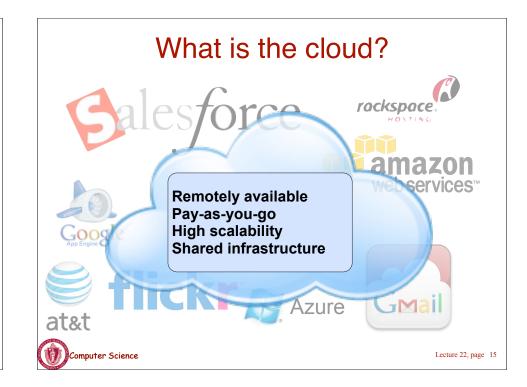
- Easier maintenance

Lecture 22, page 11

mputer Science

• Running a data center is expensive

– Desktop is available anywhere


-Easier to manage and maintain

Economy of Scale

- Larger data centers can be cheaper to buy and run than smaller ones
 - -Lower prices for buying equipment in bulk
 - -Cheaper energy rates
- Automation allows small number of sys admins to manage thousands of servers
- General trend is towards larger mega data centers - 100,000s of servers
- Has helped grow the popularity of cloud computing

Computer Science

The Cloud Stack

Software as a Service

Hosted applications Managed by provider

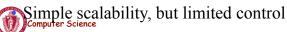
Platform as a Service

Infrastructure as a Service

Platform to let you run your own apps Provider handles scalability

> Raw infrastructure Can do whatever you want with it

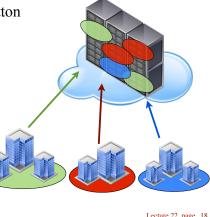
Lecture 22, page 16


Lecture 22, page 14

PaaS: Google App Engine

- Provides highly scalable execution platform
 - -Must write application to meet App Engine API
 - App Engine will autoscale your application

- Strict requirements on application state
 "Stateless" applications much easier to scale
- Not based on virtualization
 - -Multiple users' threads running in same OS
 - Allows google to quickly increase number of "worker threads" running each client's application



Lecture 22, page 17

IaaS: Amazon EC2

- Rents servers and storage to customers
 - -Uses virtualization to share each server for multiple customers
 - -Economy of scale lowers prices
 - -Can create VM with push of a button

	Smallest	Medium	Largest
VCPUs	1	5	33.5
RAM	613MB	1.7GB	68.4GB
Price	\$0.02/hr	\$0.17/hr	\$2.10/hr
Storage	\$0.10/GB per month]
Bandwidt	\$0.10 per GB]
			-

Public or Private

- Not all enterprises are comfortable with using **public cloud** services
 - -Don't want to share CPU cycles or disks with competitors
 - Privacy and regulatory concerns
- Private Cloud
 - -Use cloud computing concepts in a private data center
 - Automate VM management and deployment
 - Provides same convenience as public cloud
 - May have higher cost

Hybrid Model

Lecture 22, page 19

Programming Models

Client/Server

mputer Science

- -Web servers, databases, CDNs, etc
- Batch processing
 - -Business processing apps, payroll, etc
- Map Reduce
 - -Data intensive computing
 - -Scalability concepts built into programming model

Cloud Challenges

- Privacy / Security
 - -How to guarantee isolation between client resources?
- Extreme Scalability
 - -How to efficiently manage 1,000,000 servers?
- Programming models - How to effectively use 1,000,000 servers?

