
Computer Science Lecture 15, page Computer Science

Today’s Parable

• The Economist, the Statistician and the Mathematician
• Moral: Be careful of your assumptions

1

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

Last Class: Memory management
• Page replacement algorithms - make paging work well.

– Random, FIFO, MIN, LRU
– Approximations to LRU: Second chance
– Multiprogramming considerations

2

Computer Science Lecture 15, page Computer Science CS377: Operating Systems

Page Sizes
• Reasons for small pages:

– More effective memory use.
– Higher degree of multiprogramming possible.

• Reasons for large pages:
– Smaller page tables
– Amortizes disk overheads over a larger page
– Fewer page faults (for processes that exhibit locality of references)

• Page sizes are growing because:
– Physical memory is cheap. As a result, page tables could get huge with

small pages. Also, internal fragmentation is less of a concern with abundant
memory.

– CPU speed is increasing faster than disk speed. As a result, page faults
result in a larger slow down than they used to. Reducing the number of page
faults is critical to performance.

3

Computer Science Lecture 16, page Computer Science

Kernel Memory Allocators

• Buddy allocator
– Allocate memory in size of 2^n
– Can lead to internal fragmentation

• Slab allocator
– Group objects of same size in a “slab”
– Object cache points to one or more slabs
– Separate cache for each kernel data structure (e.g., PCB)
– Used in solaris, linux

CS377: Operating Systems 4

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

Today: File System Functionality

Remember the high-level view of the OS as a translator from the
user abstraction to the hardware reality.

User
Abstraction

Hardware
Resource

Processes/Threads CPU

Address Space <= OS => Memory

Files Disk

5

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

File System Abstraction

6

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

User Requirements on Data
• Persistence: data stays around between jobs, power cycles,

crashes
• Speed: can get to data quickly
• Size: can store lots of data
• Sharing/Protection: users can share data where appropriate or

keep it private when appropriate
• Ease of Use: user can easily find, examine, modify, etc. data

7

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

Hardware/OS Features
• Hardware provides:

– Persistence: Disks provide non-volatile memory
– Speed: Speed gained through random access
– Size: Disks keep getting bigger (typical disk on a PC=200GB)

• OS provides:
– Persistence: redundancy allows recovery from some additional failures
– Sharing/Protection: Unix provides read, write, execute privileges for files
– Ease of Use

• Associating names with chunks of data (files)
• Organize large collections of files into directories
• Transparent mapping of the user's concept of files and directories onto

locations on disks
• Search facility in file systems (SpotLight in Mac OS X)

8

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

Files
• File: Logical unit of storage on a storage device

– Formally, named collection of related information recorded on secondary
storage

– Example: reader.cc, a.out

• Files can contain programs (source, binary) or data
• Files can be structured or unstructured

– Unix implements files as a series of bytes (unstructured)
– IBM mainframes implements files as a series of records or objects

(structured)

• File attributes: name, type, location, size, protection, creation time

9

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

User Interface to the File System
Common file operations:
Data operations:
 Create() Open() Read()
 Delete() Close() Write()
 Seek()

Naming operations: Attributes (owner, protection,...):
 HardLink() SetAttribute()
 SoftLink() GetAttribute()
 Rename()

10

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

OS File Data Structures
1. Open file table - shared by all processes with an open file.

– open count
– file attributes, including ownership, protection information, access

times, ...
– location(s) of file on disk
– pointers to location(s) of file in memory

2. Per-process file table - for each file,
– pointer to entry in the open file table
– current position in file (offset)
– mode in which the process will access the file (r, w, rw)
– pointers to file buffer

11

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

File Operations: Creating a File
• Create(name)

– Allocate disk space (check disk quotas, permissions, etc.)
– Create a file descriptor for the file including name, location on disk, and all

file attributes.
– Add the file descriptor to the directory that contains the file.
– Optional file attribute: file type (Word file, executable, etc.)

• Advantages: better error detection, specialized default operations
(double-clicking on a file knows what application to start), enables
storage layout optimizations

• Disadvantages: makes the file system and OS more complicated, less
flexible for user.

• Unix opts for simplicity (no file types), Macintosh/Windows opt for
user-friendliness

12

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

File Operations: Deleting a File
• Delete(name)

– Find the directory containing the file.
– Free the disk blocks used by the file.
– Remove the file descriptor from the directory.

– Refcounts and hardlinks?

13

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

File Operations: Open and Close
• fileId = Open(name, mode)

– Check if the file is already open by another process. If not,
• Find the file.
• Copy the file descriptor into the system-wide open file table.

– Check the protection of the file against the requested mode. If not ok, abort
– Increment the open count.
– Create an entry in the process's file table pointing to the entry in the system-

wide file table. Initialize the current file pointer to the start of the file.

• Close(fileId)
– Remove the entry for the file in the process's file table.
– Decrement the open count in the system-wide file table.
– If the open count == 0, remove the entry in the system-wide file table.

14

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

OS File Operations: Reading a File
• Read(fileID, from, size, bufAddress) - random access

– OS reads “size” bytes from file position “from” into “bufAddress”
 for (i = from; i < from + size; i++)
 bufAddress[i - from] = file[i];

• Read(fileID, size, bufAddress) - sequential access
– OS reads “size” bytes from current file position, fp, into “bufAddress” and

increments current file position by size
 for (i = 0; i < size; i++)
 bufAddress[i] = file[fp + i];
 fp += size;

15

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

OS File Operations
• Write is similar to reads, but copies from the buffer to the file.
• Seek just updates fp.
• Memory mapping a file

– Map a part of the portion virtual address space to a file
– Read/write to that portion of memory \implies OS reads/writes from

corresponding location in the file
– File accesses are greatly simplified (no read/write call are necessary)

16

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

File Access Methods
• Common file access patterns from the programmer's perspective

– Sequential: data processed in order, a byte or record at a time.
• Most programs use this method
• Example: compiler reading a source file.

– Keyed: address a block based on a key value.
• Example: database search, hash table, dictionary

• Common file access patterns from the OS perspective:
– Sequential: keep a pointer to the next byte in the file. Update the pointer on

each read/write.
– Random: address any block in the file directly given its offset within the

file.

17

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

Naming and Directories
• Need a method of getting back to files that are left on disk.
• OS uses numbers for each files

– Users prefer textual names to refer to files.
– Directory: OS data structure to map names to file descriptors

• Naming strategies
– Single-Level Directory: One name space for the entire disk, every name

is unique.
1. Use a special area of disk to hold the directory.
2. Directory contains <name, index> pairs.
3. If one user uses a name, no one else can.
4. Some early computers used this strategy. Early personal computers

also used this strategy because their disks were very small.
– Two Level Directory: each user has a separate directory, but all of each

user's files must still have unique names

18

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

Naming Strategies (continued)
• Multilevel Directories - tree structured name space (Unix, and all

other modern operating systems).
1. Store directories on disk, just like files except the file descriptor for

directories has a special flag bit.
2. User programs read directories just like any other file, but only special

system calls can write directories.
3. Each directory contains <name, fileDesc> pairs in no particular order.

The file referred to by a name may be another directory.
4. There is one special root directory. Example: How do we look up name: /

usr/local/bin/netscape

19

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

Referential naming
• Hard links (Unix: ln command)

– A hard link adds a second connection to a file
– Example: creating a hard link from B to A

 Initially: A → file #100
 --
 After “ln A B”: A → file #100
 B → file #100

– OS maintains reference counts, so it will only delete a file after the last link
to it has been deleted.

– Problem: user can create circular links with directories and then the OS can
never delete the disk space.

– Solution: No hard links to directories

20

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

Referential Naming
• Soft links (Unix: ln -s command)

– A soft link only makes a symbolic pointer from one file to another.
– Example: creating a soft link from B to A

 Initially: A → file #100
 --
 After “ln A B”: A → file #100
 B → A

– removing B does not affect A
– removing A leaves the name B in the directory, but its contents no longer

exists
– Problem: circular links can cause infinite loops (e.g., trying to list all the

files in a directory and its subdirectories)
– Solution: limit number of links traversed.

21

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

Directory Operations
• Search for a file: locate an entry for a file
• Create a file: add a directory listing
• Delete a file: remove directory listing
• List a directory: list all files (ls command in UNIX)
• Rename a file
• Traverse the file system

22

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

Protection
• The OS must allow users to control sharing of their files =>

control access to files
• Grant or deny access to file operations depending on protection

information
• Access lists and groups (Windows NT)

– Keep an access list for each file with user name and type of access
– Lists can become large and tedious to maintain

• Access control bits (UNIX)
– Three categories of users (owner, group, world)
– Three types of access privileges (read, write, execute)
– Maintain a bit for each combination (111101000 = rwxr-x---)

23

Computer Science Lecture 16, page Computer Science CS377: Operating Systems

Summary of File System Functionality

• Naming
• Protection
• Persistence
• Fast access

24

