
Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Last Class: Synchronization

• Synchronization
– Mutual exclusion
– Critical sections

• Example: Too Much Milk
• Locks
• Synchronization primitives are required to ensure that only
one thread executes in a critical section at a time.

1 Computer Science Lecture 8, page Computer Science

Review

• MLFQ CPU scheduler

• What is test & set?

• Implementing locks
– By disabling interrupts
– Using Test & Set

2

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Today: Semaphores
• Review: hardware support for synchronization

• What are semaphores?
– Semaphores are basically generalized locks.
– Like locks, semaphores are a special type of variable that supports two

atomic operations and offers elegant solutions to synchronization problems.
– They were invented by Dijkstra in 1965.

3 Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Semaphores
• Semaphore: an integer variable that can be updated only using

two special atomic instructions.
• Binary (or Mutex) Semaphore: (same as a lock)

– Guarantees mutually exclusive access to a resource (only one process is in
the critical section at a time).

– Can vary from 0 to 1
– It is initialized to free (value = 1)

• Counting Semaphore:
– Useful when multiple units of a resource are available
– The initial count to which the semaphore is initialized is usually the number

of resources.
– A process can acquire access so long as at least one unit of the resource is

available

4

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Semaphores: Key Concepts
• Like locks, a semaphore supports two atomic operations, Semaphore.Wait() and

Semaphore.Signal().

 S.Wait() // wait until semaphore S
 // is available
 <critical section>

 S.Signal() // signal to other processes
 // that semaphore S is free
• Each semaphore supports a queue of processes that are waiting to access the

critical section (e.g., to buy milk).
• If a process executes S.Wait() and semaphore S is free (non-zero), it continues

executing. If semaphore S is not free, the OS puts the process on the wait queue
for semaphore S.

• A S.Signal() unblocks one process on semaphore S's wait queue.

5 Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Binary Semaphores: Example
• Too Much Milk using locks:
 Thread A Thread B

 Lock.Acquire(); Lock.Acquire();
 if (noMilk){ if (noMilk){
 buy milk; buy milk;
 } }
 Lock.Release(); Lock.Release();

• Too Much Milk using semaphores:
 Thread A Thread B

 Semaphore.Wait(); Semaphore.Wait();
 if (noMilk){ if (noMilk){
 buy milk; buy milk;
 } }
 Semaphore.Signal(); Semaphore.Signal();

6

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Implementing Signal and Wait

=> Signal and Wait of course must be atomic!
– Use interrupts or test&set to ensure atomicity

class Semaphore {
 public:
 void Wait(Process P);
 void Signal();
 private:
 int value;
 Queue Q; // queue of processes;
}
Semaphore(int val) {
 value = val;
 Q = empty;
}

Wait(Process P) {
 value = value - 1;
 if (value < 0) {
 add P to Q;
 P->block();
} }
Signal() {
 value = value + 1;
 if (value <= 0){
 remove P from Q;
 wakeup(P);
} }

7 Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Signal and Wait: Example
P1: S.Wait();
 S.Wait(); P2: S.Wait();
 S.Signal(); S.Signal();
 S.Signal();

8

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Signal and Wait: Example

9 Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Using Semaphores
• Mutual Exclusion: used to guard critical sections

– the semaphore has an initial value of 1
– S->Wait() is called before the critical section, and S->Signal() is called after

the critical section.
• Scheduling Constraints: used to express general scheduling

constraints where threads must wait for some circumstance.
– The initial value of the semaphore is usually 0 in this case.
– Example: You can implement thread join (or the Unix system call

waitpid(PID)) with semaphores:

Semaphore S;

S.value = 0; // semaphore initialization

Thread.Join Thread.Finish
 S.Wait(); S.Signal();

10

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Multiple Consumers and Producers
class BoundedBuffer {
 public:
 void Producer();
 void Consumer();
 private:
 Items buffer;
 // control access to buffers
 Semaphore mutex;
 // count of free slots
 Semaphore empty;
 // count of used slots
 Semaphore full;
}
BoundedBuffer::BoundedBuffer(
int N){
 mutex.value = 1;
 empty.value = N;
 full.value = 0;
 new buffer[N];
}

BoundedBuffer::Producer(){
 <produce item>
 empty.Wait(); // one fewer slot, or
wait
 mutex.Wait(); // get access to
buffers
 <add item to buffer>
 mutex.Signal(); // release buffers
 full.Signal(); // one more used slot
}
BoundedBuffer::Consumer(){
 full.Wait(); //wait until there's an
item
 mutex.Wait(); // get access to
buffers
 <remove item from buffer>
 mutex.Signal(); // release buffers
 empty.Signal(); // one more free
slot
 <use item> }

11 Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Multiple Consumers and Producers Problem

12

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Summary
• Locks can be implemented by disabling interrupts or busy waiting

• Semaphores are a generalization of locks

• Semaphores can be used for three purposes:
– To ensure mutually exclusive execution of a critical section (as locks do).
– To control access to a shared pool of resources (using a counting

semaphore).
– To cause one thread to wait for a specific action to be signaled from another

thread.

13 Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Next: Monitors and Condition Variables
• What is wrong with semaphores?

• Monitors
– What are they?
– How do we implement monitors?
– Two types of monitors: Mesa and Hoare

• Compare semaphore and monitors

14

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

What's wrong with Semaphores?
• Semaphores are a huge step up from the equivalent load/store

implementation, but have the following drawbacks.
– They are essentially shared global variables.
– There is no linguistic connection between the semaphore and the data to

which the semaphore controls access.
– Access to semaphores can come from anywhere in a program.
– They serve two purposes, mutual exclusion and scheduling constraints.
– There is no control or guarantee of proper usage.

• Solution: use a higher level primitive called monitors

15 Computer Science Lecture 8, page Computer Science CS377: Operating Systems

What is a Monitor?
• A monitor is similar to a class that ties the data, operations, and

in particular, the synchronization operations all together,

• Unlike classes,
– monitors guarantee mutual exclusion, i.e., only one thread may execute a

given monitor method at a time.
– monitors require all data to be private.

16

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Monitors: A Formal Definition
• A Monitor defines a lock and zero or more condition variables for

managing concurrent access to shared data.
– The monitor uses the lock to insure that only a single thread is active in the

monitor at any instance.
– The lock also provides mutual exclusion for shared data.
– Condition variables enable threads to go to sleep inside of critical sections,

by releasing their lock at the same time it puts the thread to sleep.
• Monitor operations:

– Encapsulates the shared data you want to protect.
– Acquires the mutex at the start.
– Operates on the shared data.
– Temporarily releases the mutex if it can't complete.
– Reacquires the mutex when it can continue.
– Releases the mutex at the end.

17 Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Implementing Monitors in Java
• It is simple to turn a Java class into a monitor:

– Make all the data private
– Make all methods synchronized (or at least the non-private ones)

class Queue{
 private ...; // queue data

 public void synchronized Add(Object item) {
 put item on queue;

 }

 public Object synchronized Remove() {

 if queue not empty {
 remove item;

 return item;
 }
 }

18

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Condition Variables
• How can we change remove() to wait until something is on the

queue?
– Logically, we want to go to sleep inside of the critical section
– But if we hold on to the lock and sleep, then other threads cannot access the

shared queue, add an item to it, and wake up the sleeping thread

 => The thread could sleep forever

• Solution: use condition variables
– Condition variables enable a thread to sleep inside a critical section
– Any lock held by the thread is atomically released when the thread is put to

sleep

19 Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Operations on Condition Variables
• Condition variable: is a queue of threads waiting for something

inside a critical section.
• Condition variables support three operations:

1. Wait(Lock lock): atomic (release lock, go to sleep), when the process
wakes up it re-acquires lock.

2. Signal(): wake up waiting thread, if one exists. Otherwise, it does
nothing.

3. Broadcast(): wake up all waiting threads

• Rule: thread must hold the lock when doing condition variable
operations.

20

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Condition Variables in Java
• Use wait() to give up the lock
• Use notify() to signal that the condition a thread is waiting on is satisfied.
• Use notifyAll() to wake up all waiting threads.
• Effectively one condition variable per object.

class Queue {
 private ...; // queue data

 public void synchronized Add(Object item) {
 put item on queue;
 notify ();
 }
 public Object synchronized Remove() {
 while queue is empty
 wait (); // give up lock and go to sleep
 remove and return item;
 }

21 Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Mesa versus Hoare Monitors
What should happen when signal() is called?

– No waiting threads => the signaler continues and the signal is effectively
lost (unlike what happens with semaphores).

– If there is a waiting thread, one of the threads starts executing, others must
wait

• Mesa-style: (Nachos, Java, and most real operating systems)
– The thread that signals keeps the lock (and thus the processor).
– The waiting thread waits for the lock.

• Hoare-style: (most textbooks)
– The thread that signals gives up the lock and the waiting thread gets the

lock.
– When the thread that was waiting and is now executing exits or waits again,

it releases the lock back to the signaling thread.

22

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Mesa versus Hoare Monitors (cont.)
The synchronized queuing example above works for either style of monitor, but we

can simplify it for Hoare-style semantics:
– Mesa-style: the waiting thread may need to wait again after it is awakened, because

some other thread could grab the lock and remove the item before it gets to run.
– Hoare-style: we can change the ‘while’ in Remove to an ‘if’ because the waiting

thread runs immediately after an item is added to the queue.

class Queue {
 private ...; // queue data
 public void synchronized add(Object item){
 put item on queue; notify ();
 }
 public Object synchronized remove() {
 if queue is empty // while becomes if
 wait ();
 remove and return item;
 } 23 Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Monitors in C++
• Monitors in C++ are more complicated.

• No synchronization keyword
 => The class must explicitly provide the lock, acquire and release

it correctly.

24

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Monitors in C++: Example
class Queue {
 public:
 Add();
 Remove();
 private
 Lock lock;
 // queue data();
}

Queue::Add() {
 lock->Acquire(); // lock before using data
 put item on queue; // ok to access shared data
 conditionVar->Signal();
 lock->Release(); // unlock after access
}
Queue::Remove() {
 lock->Acquire(); // lock before using data
 while queue is empty
 conditionVar->Wait(lock); // release lock & sleep
 remove item from queue;
 lock->Release(); // unlock after access
 return item;
}

25 Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Bounded Buffer using Hoare-style condition
variables

class BBMonitor {
 public:
 void Append(item);
 void Remove(item);
 private:
 item buffer[N];
 int last, count;
 Condition full, empty;

}
BBMonitor {
 count = 0;
 last = 0;
}

Append(item){
 lock.Acquire();
 if (count == N)
 empty.Wait(lock);
 buffer[last] = item;
 last = (last + 1) mod N;
 count += 1;
 full.Signal();
 lock.Release();
}
Remove(item){
 lock.Acquire();
 if (count == 0)
 full.Wait(lock);
 item = buffer[(last-count) mod N];
 count = count-1;
 empty.Signal();
 lock.Release();
}

26

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Semaphores versus Monitors
• Can we build monitors out of semaphores? After all, semaphores provide atomic

operations and queuing. Does the following work?
 condition.Wait() { semaphore.wait(); }
 condition.Signal() { semaphore.signal(); }

• But condition variables only work inside a lock. If we use semaphores inside a lock, we
have may get deadlock. Why?

• How about this?

condition.Wait(Lock *lock) {
 lock.Release();
 semaphore.wait();
 lock.Acquire();
 }
 condition.Signal() {
 semaphore.signal(); }

27 Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Semaphores versus Condition Variables

• Condition variables do not have any history, but semaphores do.
– On a condition variable signal, if no one is waiting, the signal is a no-op.

 => If a thread then does a condition.Wait, it waits.
– On a semaphore signal, if no one is waiting, the value of the semaphore is

incremented.
 => If a thread then does a semaphore.Wait, then value is

decremented and the thread continues.
• Semaphore Wait and Signal are commutative, the result is the

same regardless of the order of execution
• Condition variables are not, and as a result they must be in a

critical section to access state variables and do their job.
• It is possible to implement monitors with semaphores

28

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Implementing Monitors with Semaphores
class Monitor {
 public:
 void ConditionWait(); // Condition Wait
 void ConditionSignal(); // Condition Signal
 private:
 <shared data>; // data being protected by monitor
 semaphore cvar; // suspends a thread on a wait
 int waiters; // number of threads waiting on
 // a cvar (one for every condition)
 semaphore lock; // controls entry to monitor
 semaphore next; // suspends this thread when signaling another
 int nextCount; // number of threads suspended
} // on next
Monitor::Monitor {
 cvar = 0; // Nobody waiting on condition variable
 lock = FREE; // Nobody in the monitor
 next = nextCount = waiters = 0;
} 29 Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Implementing Monitors with Semaphores
ConditionWait() { // Condition Wait
 waiters += 1;
 if (nextCount > 0)
 next.Signal(); // resume a suspended thread
 else
 lock.Signal(); // allow a new thread in the monitor
 cvar.wait(); // wait on the condition
 waiters -= 1;
}
ConditionSignal(){ // Condition Signal
 if (waiters > 0) { // don't signal cvar if nobody is waiting
 nextCount += 1;
 cvar.Signal(); // Semaphore Signal
 next.Wait(); // Semaphore Wait
 nextCount -= 1;
 }
}

30

Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Using the Monitor Class
// Wrapper code for all methods on the shared data
Monitor::someMethod () {
 lock.Wait(); // lock the monitor OR use synchronized
 <ops on data and calls to ConditionWait() and ConditionSignal()>
 if (nextCount > 0)
 next.Signal(); // resume a suspended thread
 else
 lock.Signal(); // allow a new thread into the monitor
}

• Is this Hoare semantics or Mesa semantics? What would you
change to provide the other semantics?

31 Computer Science Lecture 8, page Computer Science CS377: Operating Systems

Summary
• Monitor wraps operations with a mutex

• Condition variables release mutex temporarily
• Java has monitors built into the language

• C++ does not provide a monitor construct, but monitors can be
implemented by following the monitor rules for acquiring and
releasing locks

• It is possible to implement monitors with semaphores

32

