
CS 377 – Operating Systems
Discussion Session 4 Questions

Name:

Write your answers individually, but feel free to consult your notes/slides/book this week. Be
succinct (complete sentences not necessary). Remember to turn your paper over.

1. CPU Scheduling. Several types of scheduling policies were discussed in class – first-come-
first-served (FCFS), round robin (RR), shortest job first (SJF, including multilevel feedback
queues), and lottery scheduling (LS).

(a) Suppose you want to optimize your scheduler for certain types of workloads. For each
type, state and briefly justify which type of scheduler you would use: (i) multiuser
workloads in which no individual user should be favored, (ii) workloads with many
mixed CPU and I/O jobs, and (iii) workloads with frequent I/O bound jobs and some
very long-running, CPU-heavy jobs.

(b) Suppose you have 2 jobs: job A has length 10 and job B has length 20. Job A has 1
second of I/O every other second of work (starting after 1 second of work), while job
B has 1 second of I/O every 5 seconds of work. Using multilevel feedback queues and
assuming three queues and no context switch time, sketch the scheduling of the jobs
below. Remember the notation JobworkDone

time ; for example, B2
6 means that job B has

completed 2 seconds of work at time t = 6. The first two entries are filled in for you.

Queue Time Slice Job

1 1
 A11 B12

2 2
3 4

1



2. Threads. Two primary types of threads were discussed in class – user-level threads and
kernel-level threads. Threads complement processes as basic components used to execute
jobs on the CPU.

(a) True or false: user-level and kernel-level threads are exclusive (that is, processes use one
or the other). Briefly explain.

(b) Suppose you have a multithreaded process that can be configured to use either kernel
or user-level threads. Under each of the following situations about the process, which
type of threads would you prefer (and why): (i) running on a quad-core machine, (ii)
executing long I/O requests, and (iii) running an extremely large number of threads.

(c) Why would we want to use (kernel-level) threads at all instead of just using multiple
processes?

2


