
1

CS377: Operating SystemsComputer Science Lecture 12, page 1Computer Science

Last Class: Monitors
• Monitor wraps operations with a mutex

• Condition variables release mutex temporarily

• C++ does not provide a monitor construct, but monitors can be
implemented by following the monitor rules for acquiring and
releasing locks

• It is possible to implement monitors with semaphores

CS377: Operating SystemsComputer Science Lecture 12, page 2Computer Science

Real-world Examples

• Producer-consumer
– Audio-Video player: network and display threads; shared buffer
– Web servers: master thread and slave thread

• Reader-writer
– Banking system: read account balances versus update

• Dining Philosophers
– Cooperating processes that need to share limited resources

• Set of processes that need to lock multiple resources
– Disk and tape (backup),

• Travel reservation: hotel, airline, car rental databases

2

CS377: Operating SystemsComputer Science Lecture 12, page 3Computer Science

Today: Deadlocks
• What are deadlocks?

• Conditions for deadlocks

• Deadlock prevention

• Deadlock detection

CS377: Operating SystemsComputer Science Lecture 12, page 4Computer Science

Deadlocks
• Deadlock: A condition where two or more threads are waiting for

an event that can only be generated by these same threads.
• Example:

Process A: Process B:
 printer->Wait(); disk->Wait();
 disk->Wait(); printer->Wait();

 // copy from disk // copy from disk
 // to printer // to printer

 printer->Signal(); printer->Signal();
 disk->Signal(); disk->Signal();

3

CS377: Operating SystemsComputer Science Lecture 12, page 5Computer Science

Deadlocks: Terminology
• Deadlock can occur when several threads compete for a finite

number of resources simultaneously
• Deadlock prevention algorithms check resource requests and

possibly availability to prevent deadlock.
• Deadlock detection finds instances of deadlock when threads stop

making progress and tries to recover.
• Starvation occurs when a thread waits indefinitely for some

resource, but other threads are actually using it (making progress).
=> Starvation is a different condition from deadlock

CS377: Operating SystemsComputer Science Lecture 12, page 6Computer Science

Necessary Conditions for Deadlock
Deadlock can happen if all the following conditions hold.

• Mutual Exclusion: at least one thread must hold a resource in
non-sharable mode, i.e., the resource may only be used by one
thread at a time.

• Hold and Wait: at least one thread holds a resource and is
waiting for other resource(s) to become available. A different
thread holds the resource(s).

• No Preemption: A thread can only release a resource voluntarily;
another thread or the OS cannot force the thread to release the
resource.

• Circular wait: A set of waiting threads {t1, ..., tn} where ti is
waiting on ti+1 (i = 1 to n) and tn is waiting on t1.

4

CS377: Operating SystemsComputer Science Lecture 12, page 7Computer Science

Deadlock Detection Using a Resource
Allocation Graph

• We define a graph with vertices that represent both resources {r1,
..., rm} and threads {t1, ..., tn}.
– A directed edge from a thread to a resource, ti → rj indicates that ti has

requested that resource, but has not yet acquired it (Request Edge)
– A directed edge from a resource to a thread rj → ti indicates that the OS has

allocated rj to ti (Assignment Edge)

• If the graph has no cycles, no deadlock exists.
• If the graph has a cycle, deadlock might exist.

CS377: Operating SystemsComputer Science Lecture 12, page 8Computer Science

Deadlock Detection Using a Resource
Allocation Graph

• What if there are multiple interchangeable instances of a resource?
– Then a cycle indicates only that deadlock might exist.
– If any instance of a resource involved in the cycle is held by a thread not in

the cycle, then we can make progress when that resource is released.

5

CS377: Operating SystemsComputer Science Lecture 12, page 9Computer Science

Detect Deadlock and Then Correct It
• Scan the resource allocation graph for cycles, and then break the cycles.
• Different ways of breaking a cycle:

– Kill all threads in the cycle.
– Kill the threads one at a time, forcing them to give up resources.
– Preempt resources one at a time rolling back the state of the thread holding the

resource to the state it was in prior to getting the resource. This technique is
common in database transactions.

• Detecting cycles takes O(n2) time, where n is |T| + |R|. When should we execute
this algorithm?
– Just before granting a resource, check if granting it would lead to a cycle?

(Each request is then O(n2).)
– Whenever a resource request can't be filled? (Each failed request is O(n2).)
– On a regular schedule (hourly or ...)? (May take a long time to detect

deadlock)
– When CPU utilization drops below some threshold? (May take a long time

to detect deadlock)

CS377: Operating SystemsComputer Science Lecture 12, page 10Computer Science

Deadlock Prevention
Prevent deadlock: ensure that at least one of the necessary

conditions doesn't hold.
1. Mutual Exclusion: make resources sharable (but not all resources

can be shared)
2. Hold and Wait:

– Guarantee that a thread cannot hold one resource when it requests another
– Make threads request all the resources they need at once and make the

thread release all resources before requesting a new set.
3. No Preemption:

– If a thread requests a resource that cannot be immediately allocated to it,
then the OS preempts (releases) all the resources that the thread is currently
holding.

– Only when all of the resources are available, will the OS restart the thread.
– Problem: not all resources can be easily preempted, like printers.

4. Circular wait: impose an ordering (numbering) on the resources
and request them in order.

6

CS377: Operating SystemsComputer Science Lecture 12, page 11Computer Science

Deadlock Prevention with Resource
Reservation

• Threads provide advance information about the maximum
resources they may need during execution

• Define a sequence of threads {t1, ..., tn} as safe if for each ti, the
resources that ti can still request can be satisfied by the currently
available resources plus the resources held by all tj, j < i.

• A safe state is a state in which there is a safe sequence for the
threads.

• An unsafe state is not equivalent to deadlock, it just may lead to
deadlock, since some threads might not actually use the maximum
resources they have declared.

• Grant a resource to a thread is the new state is safe
• If the new state is unsafe, the thread must wait even if the resource

is currently available.
• This algorithm ensures no circular-wait condition exists.

CS377: Operating SystemsComputer Science Lecture 12, page 12Computer Science

Example
•Threads t1, t2, and t3 are competing for 12 tape drives.
•Currently, 11 drives are allocated to the threads, leaving 1 available.
•The current state is safe (there exists a safe sequence, {t1, t2, t3} where all threads may
obtain their maximum number of resources without waiting)

– t1 can complete with the current resource allocation
– t2 can complete with its current resources, plus all of t1's resources, and the unallocated tape

drive.
•t3 can complete with all its current resources, all of t1 and t2's resources, and the unallocated
tape drive.

8412t3

448t2

134t1

could
want

in usemax
need

7

CS377: Operating SystemsComputer Science Lecture 12, page 13Computer Science

Example (contd)

•If t3 requests one more drive, then it must wait because allocating the drive would
lead to an unsafe state.
•There are now 0 available drives, but each thread might need at least one more
drive.

7512t3

448t2

134t1

could
want

in usemax
need

CS377: Operating SystemsComputer Science Lecture 12, page 14Computer Science

Summary
• Deadlock: situation in which a set of threads/processes cannot

proceed because each requires resources held by another member
of the set.

• Detection and recovery: recognize deadlock after it has occurred
and break it.

• Avoidance: don't allocate a resource if it would introduce a cycle.
• Prevention: design resource allocation strategies that guarantee

that one of the necessary conditions never holds
• Code concurrent programs very carefully. This only helps prevent

deadlock over resources managed by the program, not OS
resources.

• Ignore the possibility! (Most OSes use this option!!)

