Last Class: Monitors

* Monitor wraps operations with a mutex
+ Condition variables release mutex temporarily

* C++ does not provide a monitor construct, but monitors can be
implemented by following the monitor rules for acquiring and
releasing locks

+ It is possible to implement monitors with semaphores

CompuTer‘ Science CS377: Operating Systems Lecture 12, page 1

Real-world Examples

¢ Producer-consumer
— Audio-Video player: network and display threads; shared buffer
— Web servers: master thread and slave thread
* Reader-writer
— Banking system: read account balances versus update
* Dining Philosophers
— Cooperating processes that need to share limited resources

« Set of processes that need to lock multiple resources
— Disk and tape (backup),

 Travel reservation: hotel, airline, car rental databases

CompuTer‘ Science CS377: Operating Systems Lecture 12, page 2

Today: Deadlocks

e What are deadlocks?
e Conditions for deadlocks
* Deadlock prevention

e Deadlock detection

ompuTer‘ Science CS377: Operating Systems Lecture 12, page 3

Deadlocks

* Deadlock: A condition where two or more threads are waiting for
an event that can only be generated by these same threads.

* Example:

Process A: Process B:
printer->Wait(); disk->Wait();
disk->Wait(); printer->Wait();
// copy from disk // copy from disk
// to printer // to printer
printer->Signal(); printer->Signal();
disk->Signal(); disk->Signal();

ompuTer‘ Science CS377: Operating Systems Lecture 12, page 4

Deadlocks: Terminology

* Deadlock can occur when several threads compete for a finite
number of resources simultaneously

* Deadlock prevention algorithms check resource requests and
possibly availability to prevent deadlock.

* Deadlock detection finds instances of deadlock when threads stop
making progress and tries to recover.

 Starvation occurs when a thread waits indefinitely for some
resource, but other threads are actually using it (making progress).

=> Starvation is a different condition from deadlock

ompuTer‘ Science CS377: Operating Systems Lecture 12, page 5

Necessary Conditions for Deadlock

Deadlock can happen if all the following conditions hold.

e Mutual Exclusion: at least one thread must hold a resource in
non-sharable mode, i.e., the resource may only be used by one
thread at a time.

* Hold and Wait: at least one thread holds a resource and is
waiting for other resource(s) to become available. A different
thread holds the resource(s).

* No Preemption: A thread can only release a resource voluntarily;
another thread or the OS cannot force the thread to release the
resource.

+ Circular wait: A set of waiting threads {7, ..., t,} where ¢, is
waiting on ¢;,, (i = 1 to n) and ¢, is waiting on ¢,.

ompuTer‘ Science CS377: Operating Systems Lecture 12, page 6

Deadlock Detection Using a Resource
Allocation Graph

* We define a graph with vertices that represent both resources {r,,
r,,+ and threads {#,, ..., ¢,}.

— A directed edge from a thread to a resource, t, — r; indicates that ¢, has
requested that resource, but has not yet acquired it (Request Edge)

— A directed edge from a resource to a thread , — ¢, indicates that the OS has
allocated 7, to ¢, (Assignment Edge)

+ If the graph has no cycles, no deadlock exists.
+ If the graph has a cycle, deadlock might exist.

rl r2

@ m}(t/c

r3 r4

ompuTer‘ Science CS377: Operating Systems Lecture 12, page 7

Deadlock Detection Using a Resource
Allocation Graph

* What if there are multiple interchangeable instances of a resource?
— Then a cycle indicates only that deadlock might exist.

— If any instance of a resource involved in the cycle is held by a thread not in
the cycle, then we can make progress when that resource is released.

rl { r2 J rl { r2 J
(- \\9\ \/ \\ @

2 t3 t4 /tl (2) [3) (t4
)clciiclo cfol

r3 ‘ r4 r3 ‘ ‘ r4

ompuTer‘ Science CS377: Operating Systems Lecture 12, page 8

Detect Deadlock and Then Correct It

» Scan the resource allocation graph for cycles, and then break the cycles.
+ Different ways of breaking a cycle:

— Kill all threads in the cycle.

— Kill the threads one at a time, forcing them to give up resources.

— Preempt resources one at a time rolling back the state of the thread holding the
resource to the state it was in prior to getting the resource. This technique is
common in database transactions.

+ Detecting cycles takes O(n?) time, where 7 is |7] + |R|. When should we execute
this algorithm?

— Just before granting a resource, check if granting it would lead to a cycle?
(Each request is then O(n?).)

— Whenever a resource request can't be filled? (Each failed request is O(r?).)

— On a regular schedule (hourly or ...)? (May take a long time to detect
deadlock)

— When CPU utilization drops below some threshold? (May take a long time
to detect deadlock)

CompuTer‘ Science CS377: Operating Systems Lecture 12, page 9

Deadlock Prevention

Prevent deadlock: ensure that at least one of the necessary
conditions doesn't hold.

1. Mutual Exclusion: make resources sharable (but not all resources
can be shared)

2. Hold and Wait:

— Guarantee that a thread cannot hold one resource when it requests another
— Make threads request all the resources they need at once and make the
thread release all resources before requesting a new set.
3. No Preemption:

— If a thread requests a resource that cannot be immediately allocated to it,
then the OS preempts (releases) all the resources that the thread is currently
holding.

— Only when all of the resources are available, will the OS restart the thread.
— Problem: not all resources can be easily preempted, like printers.
4. Circular wait: impose an ordering (numbering) on the resources
and request them in order.

CompuTer‘ Science CS377: Operating Systems Lecture 12, page 10

Deadlock Prevention with Resource
Reservation

* Threads provide advance information about the maximum
resources they may need during execution

¢ Define a sequence of threads {z,, ..., z,} as safe if for each z, the
resources that 7, can still request can be satisfied by the currently
available resources plus the resources held by all 7, j <.

* A safe state is a state in which there is a safe sequence for the
threads.

¢ An unsafe state is not equivalent to deadlock, it just may lead to
deadlock, since some threads might not actually use the maximum
resources they have declared.

e Qrant a resource to a thread is the new state is safe

+ If'the new state is unsafe, the thread must wait even if the resource
is currently available.

* This algorithm ensures no circular-wait condition exists.

ompuTer‘ Science CS377: Operating Systems Lecture 12, page 11

Example

*Threads t, t,, and t; are competing for 12 tape drives.
*Currently, 11 drives are allocated to the threads, leaving 1 available.
*The current state is safe (there exists a safe sequence, {t,, t,, t;} where all threads may
obtain their maximum number of resources without waiting)

— t; can complete with the current resource allocation

— t, can complete with its current resources, plus all of t,'s resources, and the unallocated tape

drive.

°t, can complete with all its current resources, all of t;, and t,'s resources, and the unallocated
tape drive.

max | inuse | could
need want
t, 4 3 1
t, 8 4 4
t, 12 4 8

ompuTer‘ Science CS377: Operating Systems Lecture 12, page 12

Example (contd)

*If t, requests one more drive, then it must wait because allocating the drive would
lead to an unsafe state.

*There are now 0 available drives, but each thread might need at least one more
drive.

max | inuse | could
need want
t, 4 3 1
t, 8 4 4
t, 12 5 7
omputer Science (CS377: Operating Systems Lecture 12, page 13

Summary

* Deadlock: situation in which a set of threads/processes cannot
proceed because each requires resources held by another member
of the set.

* Detection and recovery: recognize deadlock after it has occurred
and break it.

* Avoidance: don't allocate a resource if it would introduce a cycle.

* Prevention: design resource allocation strategies that guarantee
that one of the necessary conditions never holds

* Code concurrent programs very carefully. This only helps prevent
deadlock over resources managed by the program, not OS
resources.

+ Ignore the possibility! (Most OSes use this option!!)

ompuTer‘ Science CS377: Operating Systems Lecture 12, page 14

