
1

CS377: Operating SystemsComputer Science Lecture 7, page 1Computer Science

Last Class: Threads and Scheduling

• Thread: sequential execution stream within a process
• Kernel threads versus user-level threads
• Goals for Scheduling:

– Minimize average response time
– Maximize throughput
– Share CPU equally
– Other goals?

• Scheduling Algorithms:
– Selecting a scheduling algorithm is a policy decision
– FCFS: simple, but typically fails to meet above goals

CS377: Operating SystemsComputer Science Lecture 7, page 2Computer Science

Today: More on Scheduling Algorithms

• Round Robin

• SJF

• Multilevel Feedback Queues

• Lottery Scheduling

2

CS377: Operating SystemsComputer Science Lecture 7, page 3Computer Science

Round Robin Scheduling
• Variants of round robin are used in most time sharing systems
• Add a timer and use a preemptive policy.
• After each time slice, move the running thread to the back of the queue.
• Selecting a time slice:

– Too large - waiting time suffers, degenerates to FCFS if processes are never
preempted.

– Too small - throughput suffers because too much time is spent context switching.
=> Balance these tradeoffs by selecting a time slice where context switching is
roughly 1% of the time slice.

• Today: typical time slice= 10-100 ms, context switch time= 0.1-1ms
• Advantage: It's fair; each job gets an equal shot at the CPU.
• Disadvantage: Average waiting time can be bad.

CS377: Operating SystemsComputer Science Lecture 7, page 4Computer Science

Round Robin Scheduling: Example 1

•5 jobs, 100 seconds each, time slice 1 second, context switch time of 0

Average

1005

1004

1003

1002

1001

Round RobinFCFSRound RobinFCFS

Wait TimeCompletion Time

LengthJob

3

CS377: Operating SystemsComputer Science Lecture 7, page 5Computer Science

Round Robin Scheduling: Example 2
•5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1 second, context
switch time of 0 seconds

Average

105

204

303

402

501
Round RobinFCFSRound RobinFCFS

Wait TimeCompletion Time
LengthJob

CS377: Operating SystemsComputer Science Lecture 7, page 6Computer Science

SJF/SRTF: Shortest Job First
• Schedule the job that has the least (expected) amount of work

(CPU time) to do until its next I/O request or termination.
• Advantages:

– Provably optimal with respect to minimizing the average waiting time
– Works for preemptive and non-preemptive schedulers
– Preemptive SJF is called SRTF - shortest remaining time first

=> I/O bound jobs get priority over CPU bound jobs

• Disadvantages:
– Impossible to predict the amount of CPU time a job has left
– Long running CPU bound jobs can starve

4

CS377: Operating SystemsComputer Science Lecture 7, page 7Computer Science

SJF: Example
•5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1 second, context
switch time of 0 seconds

Average

105

204

303

402

501

SJFRRFCFSSJFRRFCFS

Wait TimeCompletion TimeLengthJob

CS377: Operating SystemsComputer Science Lecture 7, page 8Computer Science

Multilevel Feedback Queues (MLFQ)

• Multilevel feedback queues use past behavior to predict the future
and assign job priorities
=> overcome the prediction problem in SJF

• If a process is I/O bound in the past, it is also likely to be I/O
bound in the future (programs turn out not to be random.)

• To exploit this behavior, the scheduler can favor jobs that have
used the least amount of CPU time, thus approximating SJF.

• This policy is adaptive because it relies on past behavior and
changes in behavior result in changes to scheduling decisions.

5

CS377: Operating SystemsComputer Science Lecture 7, page 9Computer Science

Approximating SJF: Multilevel
Feedback Queues

• Multiple queues with different priorities.
• Use Round Robin scheduling at each priority level, running the

jobs in highest priority queue first.
• Once those finish, run jobs at the next highest priority queue, etc.

(Can lead to starvation.)
• Round robin time slice increases exponentially at lower priorities.

CS377: Operating SystemsComputer Science Lecture 7, page 10Computer Science

Adjusting Priorities in MLFQ
• Job starts in highest priority queue.

• If job's time slices expires, drop its priority one level.

• If job's time slices does not expire (the context switch comes from
an I/O request instead), then increase its priority one level, up to
the top priority level.

⇒CPU bound jobs drop like a rock in priority and I/O bound jobs
stay at a high priority.

6

CS377: Operating SystemsComputer Science Lecture 7, page 11Computer Science

Multilevel Feedback Queues:Example 1

•3 jobs, of length 30, 20, and 10
seconds each, initial time slice 1
second, context switch time of 0
seconds, all CPU bound (no I/O), 3
queues

Average

103

202

301

MLFQRRMLFQRR

Wait TimeCompletion Time

LengthJob

43

22

11

JobTime
 Slice

Queue

CS377: Operating SystemsComputer Science Lecture 7, page 12Computer Science

Multilevel Feedback Queues:Example 2

•3 jobs, of length 30, 20, and 10
seconds, the 10 sec job has 1 sec of I/0
every other sec, initial time slice 2 sec,
context switch time of 0 sec, 2 queues.

Average

103

202

301

MLFQRRMLFQRR

Wait TimeCompletion Time

LengthJob

42

21

JobTime
Slice

Queue

7

CS377: Operating SystemsComputer Science Lecture 7, page 13Computer Science

Improving Fairness
Since SJF is optimal, but unfair, any increase in fairness by giving

long jobs a fraction of the CPU when shorter jobs are available
will degrade average waiting time.

Possible solutions:
• Give each queue a fraction of the CPU time. This solution is only

fair if there is an even distribution of jobs among queues.
• Adjust the priority of jobs as they do not get serviced (Unix

originally did this.) This ad hoc solution avoids starvation but
average waiting time suffers when the system is overloaded
because all the jobs end up with a high priority,.

CS377: Operating SystemsComputer Science Lecture 7, page 14Computer Science

Lottery Scheduling
• Give every job some number of lottery tickets.
• On each time slice, randomly pick a winning ticket.
• On average, CPU time is proportional to the number of tickets

given to each job.
• Assign tickets by giving the most to short running jobs, and fewer

to long running jobs (approximating SJF). To avoid starvation,
every job gets at least one ticket.

• Degrades gracefully as load changes. Adding or deleting a job
affects all jobs proportionately, independent of the number of
tickets a job has.

8

CS377: Operating SystemsComputer Science Lecture 7, page 15Computer Science

Lottery Scheduling: Example
• Short jobs get 10 tickets, long jobs get 1 ticket each.

1/10
10/1
2/0
0/2

9%91%1/1

% of CPU each
long job gets

% of CPU each
short job gets

short jobs/
long jobs

CS377: Operating SystemsComputer Science Lecture 7, page 16Computer Science

Summary of Scheduling Algorithms:
• FCFS: Not fair, and average waiting time is poor.
• Round Robin: Fair, but average waiting time is poor.
• SJF: Not fair, but average waiting time is minimized assuming we

can accurately predict the length of the next CPU burst. Starvation
is possible.

• Multilevel Queuing: An implementation (approximation) of SJF.
• Lottery Scheduling: Fairer with a low average waiting time, but

less predictable.
⇒Our modeling assumed that context switches took no time, which

is unrealistic.

9

CS377: Operating SystemsComputer Science Lecture 7, page 17Computer Science

Round Robin Scheduling: Example 1

•5 jobs, 100 seconds each, time slice 1 second, context switch time of 0

398200498300Average

4004005005001005

3993004994001004

3982004983001003

3971004972001002

39604961001001

Round RobinFCFSRound RobinFCFS

Wait TimeCompletion Time

LengthJob

CS377: Operating SystemsComputer Science Lecture 7, page 18Computer Science

Round Robin Scheduling: Example 2
•5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice
1 second, context switch time of 0 seconds

8080110110Average

4014050150105

7012090140204

9090120120303

1005014090402

100015050501

Round RobinFCFSRound RobinFCFS

Wait TimeCompletion Time

LengthJob

10

CS377: Operating SystemsComputer Science Lecture 7, page 19Computer Science

SJF: Example
•5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1 second, context
switch time of 0 seconds

40808070110110Average

0401401050150105

10701203090140204

30909060120120303

601005010014090402

100100015015050501

SJFRRFCFSSJFRRFCFS

Wait TimeCompletion TimeLengthJob

CS377: Operating SystemsComputer Science Lecture 7, page 20Computer Science

Multilevel Feedback Queues:Example 1

•5 jobs, of length 30, 20, and 10
seconds each, initial time slice 1
second, context switch time of 0
seconds, all CPU bound (no I/O), 3
queues

28 1/326 2/348 1/346 2/3Average

22203230103

33305350202

30306060301

MLFQRRMLFQRR

Wait TimeCompletion Time

LengthJob

153 , 273 , 39322

1137 , 2177 , 3217

12511 , 22911 , 33210 ...

43

111 , 221 , 33111

JobTime
Slice

Queue

11

CS377: Operating SystemsComputer Science Lecture 7, page 21Computer Science

Multilevel Feedback Queues:Example 2

•3 jobs, of length 30, 20, and 10
seconds, the 10 sec job has 1 sec of I/0
every other sec, initial time slice 1 sec,
context switch time of 0 sec, 2 queues.

25 1/326 2/34546 2/3Average

8201830103

30305050202

30306060301

MLFQRRMLFQRR

Wait TimeCompletion
Time

LengthJob

CS377: Operating SystemsComputer Science Lecture 7, page 22Computer Science

Lottery Scheduling Example
• Short jobs get 10 tickets, long jobs get 1 ticket each.

5% (1/20)50% (10/20)1/10
< 1% (1/101)10% (10/101)10/1

50% (10/20)2/0
50% (1/2)0/2
9% (1/11)91% (10/11)1/1

% of CPU each
long job gets

% of CPU each
short job gets

short jobs/
long jobs

