

Roun	d Ro	obin	Sch	nedulin	g: E	xample 2
•5 jobs, of ler switch time o	ngth 50, f 0 secor	40, 30, 20 nds	, and 10	seconds each,	time slie	ce 1 second, contex
			Cor	npletion Time		Wait Time
	Job	Length	FCFS	Round Robin	FCFS	Round Robin
	1	50				
	2	40				
	3	30				
	4	20				
	5	10				
	A	Average				
Computer Sc	ience		CS377: 0	perating Systems		Lecture 7, page

SJF/SRTF: Shortest Job First

• Schedule the job that has the least (expected) amount of work (CPU time) to do until its next I/O request or termination.

- Advantages:
 - Provably optimal with respect to minimizing the average waiting time
 - Works for preemptive and non-preemptive schedulers
 - Preemptive SJF is called SRTF shortest remaining time first
 - => I/O bound jobs get priority over CPU bound jobs

• Disadvantages:

- Impossible to predict the amount of CPU time a job has left
- Long running CPU bound jobs can starve

Computer Science

CS377: Operating Systems

Lecture 7, page 6

Multilevel Feedback Queues:Example 1

•3 jobs, of length 30, 20, and 10 seconds each, initial time slice 1 second, context switch time of 0 seconds, all CPU bound (no I/O), 3 queues

Queue	Time Slice	Job
1	1	
2	2	
3	4	

Computer Science

Queue

1

2

Time

Slice

2

4

Computer Science

		Com	pletion Time	Wait Time		
Job	Length	RR	MLFQ	RR	MLFQ	
1	30					
2	20					
3	10					
Average						

Completion Time

Lecture 7, page 11

Wait Time

Multilevel Feedback Queues:Example 2

CS377: Operating Systems

•3 jobs, of length 30, 20, and 10 seconds, the 10 sec job has 1 sec of I/0 every other sec, initial time slice 2 sec, context switch time of 0 sec, 2 queues.

Job

b has 1 sec of I/0	Job	Length	RR	MLFQ	RR	MLFQ
l time slice 2 sec,	1	30				
t 0 sec, 2 queues.	2	20				
	3	10				
	A	verage				
CS377: Operat	ing Syste	ems			Lecture	7, page 12

Lottery Scheduling: Example							
• Short	jobs get 10 ticket	s, long jobs get 1 tick	ket each.				
	# short jobs/	% of CPU each	% of CPU each	7			
	# long jobs	short job gets	long job gets				
	1/1	91%	9%				
	0/2						
	2/0			_			
	10/1			_			
	1/10						
Computer	Lecture 7, page 15						

Summary of Scheduling Algorithms: FCFS: Not fair, and average waiting time is poor. Round Robin: Fair, but average waiting time is poor. SJF: Not fair, but average waiting time is minimized assuming we can accurately predict the length of the next CPU burst. Starvation is possible. Multilevel Queuing: An implementation (approximation) of SJF. Lottery Scheduling: Fairer with a low average waiting time, but less predictable. Our modeling assumed that context switches took no time, which is unrealistic.

		Col	mpletion Time		Wait Time
Job	Length	FCFS	Round Robin	FCFS	Round Robin
	100	100	496	0	396
2	100	200	497	100	397
3	100	300	498	200	398
4	100	400	499	300	399
5	100	500	500	400	400
А	verage	300	498	200	398

Round Robin Scheduling: Example 1

Round Robin Scheduling: Example 2

•5 jobs, of length 50, 40, 30, 20, and 10 seconds each, time slice 1 second, context switch time of 0 seconds

		Cor	npletion Time		Wait Time
Job	Length	FCFS	Round Robin	FCFS	Round Robin
1	50	50	150	0	100
2	40	90	140	50	100
3	30	120	120	90	90
4	20	140	90	120	70
5	10	150	50	140	40
A	verage	110	110	80	80

Computer Science

CS377: Operating Systems

Lecture 7, page 18

		,	SJF	F: E	Exa	mpl	е	
•5 jobs, o switch ti	of lengtl me of 0	n 50, 40, seconds	30, 20,	and 10	second	ls each, ti	me slice	1 second, conte
	Job	Length	Con	pletion	Time		Wait Ti	ne
			FCFS	RR	SJF	FCFS	RR	SJF
	1	50	50	150	150	0	100	100
	2	40	90	140	100	50	100	60
	3	30	120	120	60	90	90	30
	4	20	140	90	30	120	70	10
	5	10	150	50	10	140	40	0
	A	verage	110	110	70	80	80	40
	er Scienc	e		CS377: Op	erating Sys	tems		Lecture 7, pag

Multilevel Feedback Queues:Example 1

•5 jobs, of length 30, 20, and 10 seconds each, initial time slice 1 second, context switch time of 0 seconds, all CPU bound (no I/O), 3 queues

		Completion Time		Wai	t Time
Job	Length	RR	MLFQ	RR	MLFQ
1	30	60	60	30	30
2	20	50	53	30	33
3	10	30	32	20	22
A	Average		48 1/3	26 2/3	28 1/3

Lottery Scheduling Example								
• Short jobs get 10 tickets, long jobs get 1 ticket each.								
	# short jobs/	% of CPU each	% of CPU each	7				
	# long jobs	short job gets	long job gets					
	1/1	91% (10/11)	9% (1/11)	1				
	0/2		50% (1/2)					
	2/0	50% (10/20)]				
	10/1 10% (10/101) < 1% (1/101)							
	1/10	50% (10/20)	5% (1/20)					
Computer	Computer Science CS377: Operating Systems Lecture 7, page 22							