
1

CS377: Operating SystemsComputer Science Lecture 6, page 1Computer Science

Last Class: Processes

• A process is the unit of execution.
• Processes are represented as Process Control Blocks in the OS

– PCBs contain process state, scheduling and memory management
information, etc

• A process is either New, Ready, Waiting, Running, or Terminated.
• On a uniprocessor, there is at most one running process at a time.
• The program currently executing on the CPU is changed by

performing a context switch
• Processes communicate either with message passing or shared

memory

CS377: Operating SystemsComputer Science Lecture 6, page 2Computer Science

Today: Threads

• What are threads?

• Where should we implement threads? In the kernel? In a user
level threads package?

• How should we schedule threads (or processes) onto the CPU?

2

CS377: Operating SystemsComputer Science Lecture 6, page 3Computer Science

Processes versus Threads
• A process defines the address space, text, resources, etc.,
• A thread defines a single sequential execution stream within a

process (PC, stack, registers).
• Threads extract the thread of control information from the

process
• Threads are bound to a single process.
• Each process may have multiple threads of control within it.

– The address space of a process is shared among all its threads
– No system calls are required to cooperate among threads
– Simpler than message passing and shared-memory

CS377: Operating SystemsComputer Science Lecture 6, page 4Computer Science

Single and Multithreaded Processes

3

CS377: Operating SystemsComputer Science Lecture 6, page 5Computer Science

Classifying Threaded Systems
Operating Systems can support one or many address spaces, and one or many

threads per address space.

CS377: Operating SystemsComputer Science Lecture 6, page 6Computer Science

Example Threaded Program

• Forking a thread can be a system call to the kernel, or a
procedure call to a thread library (user code).

4

CS377: Operating SystemsComputer Science Lecture 6, page 7Computer Science

Kernel Threads

• A kernel thread, also known as a lightweight process, is a thread
that the operating system knows about.

• Switching between kernel threads of the same process requires a
small context switch.
– The values of registers, program counter, and stack pointer must be

changed.
– Memory management information does not need to be changed since the

threads share an address space.

• The kernel must manage and schedule threads (as well as
processes), but it can use the same process scheduling algorithms.

Switching between kernel threads is slightly faster than
 switching between processes.

CS377: Operating SystemsComputer Science Lecture 6, page 8Computer Science

User-Level Threads
• A user-level thread is a thread that the OS does not know about.

• The OS only knows about the process containing the threads.

• The OS only schedules the process, not the threads within the
process.

• The programmer uses a thread library to manage threads (create
and delete them, synchronize them, and schedule them).

5

CS377: Operating SystemsComputer Science Lecture 6, page 9Computer Science

User-Level Threads

CS377: Operating SystemsComputer Science Lecture 6, page 10Computer Science

User-Level Threads: Advantages
• There is no context switch involved when switching threads.
• User-level thread scheduling is more flexible

– A user-level code can define a problem dependent thread scheduling policy.
– Each process might use a different scheduling algorithm for its own threads.
– A thread can voluntarily give up the processor by telling the scheduler it

will yield to other threads.

• User-level threads do not require system calls to create them or
context switches to move between them

 User-level threads are typically much faster than kernel
threads

6

CS377: Operating SystemsComputer Science Lecture 6, page 11Computer Science

User-Level Threads: Disadvantages
• Since the OS does not know about the existence of the user-level

threads, it may make poor scheduling decisions:
– It might run a process that only has idle threads.
– If a user-level thread is waiting for I/O, the entire process will wait.
– Solving this problem requires communication between the kernel and the

user-level thread manager.

• Since the OS just knows about the process, it schedules the
process the same way as other processes, regardless of the
number of user threads.

• For kernel threads, the more threads a process creates, the more
time slices the OS will dedicate to it.

CS377: Operating SystemsComputer Science Lecture 6, page 12Computer Science

Example: Kernel and User-Level
Threads in Solaris

7

CS377: Operating SystemsComputer Science Lecture 6, page 13Computer Science

Threading Models

• Many-to-one, one-to-one, many-to-many and two-level

CS377: Operating SystemsComputer Science Lecture 6, page 14Computer Science

Two-level Model

8

CS377: Operating SystemsComputer Science Lecture 6, page 15Computer Science

Thread Libraries

• Thread library provides programmer with API for
creating and managing threads

• Two primary ways of implementing
– Library entirely in user space
– Kernel-level library supported by the OS

CS377: Operating SystemsComputer Science Lecture 6, page 16Computer Science

Pthreads
• May be provided either as user-level or kernel-level
• A POSIX standard (IEEE 1003.1c) API for thread

creation and synchronization
• API specifies behavior of the thread library,

implementation is up to development of the library
• Common in UNIX operating systems (Solaris, Linux,

Mac OS X)

• WIN32 Threads: Similar to Posix, but for Windows

9

CS377: Operating SystemsComputer Science Lecture 6, page 17Computer Science

Java Threads
• Java threads are managed by the JVM

• Typically implemented using the threads model
provided by underlying OS

• Java threads may be created by:

– Extending Thread class
– Implementing the Runnable interface

CS377: Operating SystemsComputer Science Lecture 6, page 18Computer Science

Examples

Pthreads:
 pthread_attr_init(&attr); /* set default attrributes */
 pthread_create(&tid, &attr, sum, ¶m);

Win32 threads
ThreadHandle = CreateThread(NULL, 0, Sum, &Param, 0, &ThreadID);

Java Threads:

Sum sumObject = new Sum();
Thread t = new Thread(new Summation(param, SumObject));

t.start(); // start the thread

10

CS377: Operating SystemsComputer Science Lecture 6, page 19Computer Science

Scheduling Processes
• Multiprogramming: running more than one process

at a time enables the OS to increase system utilization
and throughput by overlapping I/O and CPU activities.

• Process Execution State

• All of the processes that the OS is currently managing
reside in one and only one of these state queues.

CS377: Operating SystemsComputer Science Lecture 6, page 20Computer Science

Scheduling Processes
• Long Term Scheduling: How does the OS determine the degree

of multiprogramming, i.e., the number of jobs executing at once
in the primary memory?

• Short Term Scheduling: How does (or should) the OS select a
process from the ready queue to execute?

– Policy Goals
– Policy Options
– Implementation considerations

11

CS377: Operating SystemsComputer Science Lecture 6, page 21Computer Science

Short Term Scheduling
• The kernel runs the scheduler at least when

1. a process switches from running to waiting,
2. an interrupt occurs, or
3. a process is created or terminated.

• Non-preemptive system: the scheduler must wait for
one of these events

• Preemptive system: the scheduler can interrupt a
running process

CS377: Operating SystemsComputer Science Lecture 6, page 22Computer Science

Criteria for Comparing Scheduling Algorithms

• CPU Utilization The percentage of time that the CPU is
busy.

• Throughput The number of processes completing in a unit
of time.

• Turnaround time The length of time it takes to run a
process from initialization to termination, including all the
waiting time.

• Waiting time The total amount of time that a process is in
the ready queue.

• Response time The time between when a process is ready to
run and its next I/O request.

12

CS377: Operating SystemsComputer Science Lecture 6, page 23Computer Science

Scheduling Policies
Ideally, choose a CPU scheduler that optimizes all criteria

simultaneously (utilization, throughput,..), but this is not
generally possible

Instead, choose a scheduling algorithm based on its ability to satisfy
a policy

• Minimize average response time - provide output to the user as quickly as
possible and process their input as soon as it is received.

• Minimize variance of response time - in interactive systems, predictability may
be more important than a low average with a high variance.

• Maximize throughput - two components
– minimize overhead (OS overhead, context switching)
– efficient use of system resources (CPU, I/O devices)

• Minimize waiting time - give each process the same amount of time on the
processor. This might actually increase average response time.

CS377: Operating SystemsComputer Science Lecture 6, page 24Computer Science

Scheduling Policies
Simplifying Assumptions

• One process per user
• One thread per process
• Processes are independent

Researchers developed these algorithms in the 70's when these
assumptions were more realistic, and it is still an open problem
how to relax these assumptions.

13

CS377: Operating SystemsComputer Science Lecture 6, page 25Computer Science

Scheduling Algorithms: A Snapshot

FCFS: First Come, First Served

Round Robin: Use a time slice and preemption to alternate jobs.

SJF: Shortest Job First

Multilevel Feedback Queues: Round robin on each priority queue.

Lottery Scheduling: Jobs get tickets and scheduler randomly
picks winning ticket.

CS377: Operating SystemsComputer Science Lecture 6, page 26Computer Science

Scheduling Policies

FCFS: First-Come-First-Served (or FIFO: First-In-First-Out)

• The scheduler executes jobs to completion in arrival order.
• In early FCFS schedulers, the job did not relinquish the CPU even

when it was doing I/O.
• We will assume a FCFS scheduler that runs when processes are

blocked on I/O, but that is non-preemptive, i.e., the job keeps the
CPU until it blocks (say on an I/O device).

14

CS377: Operating SystemsComputer Science Lecture 6, page 27Computer Science

FCFS Scheduling Policy: Example

• If processes arrive 1 time unit apart, what is the average
wait time in these three cases?

CS377: Operating SystemsComputer Science Lecture 6, page 28Computer Science

FCFS: Advantages and Disadvantages

Advantage: simple

Disadvantages:
• average wait time is highly variable as short jobs may wait behind

long jobs.

• may lead to poor overlap of I/O and CPU since CPU-bound
processes will force I/O bound processes to wait for the CPU,
leaving the I/O devices idle

15

CS377: Operating SystemsComputer Science Lecture 6, page 29Computer Science

Summary

• Thread: a single execution stream within a process
• Switching between user-level threads is faster than between kernel

threads since a context switch is not required.
• User-level threads may result in the kernel making poor

scheduling decisions, resulting in slower process execution than if
kernel threads were used.

• Many scheduling algorithms exist. Selecting an algorithm is a
policy decision and should be based on characteristics of
processes being run and goals of operating system (minimize
response time, maximize throughput, ...).

