
Active and Accelerated Learning of Cost Models for
Optimizing Scientific Applications

Piyush Shivam
Duke University

shivam@cs.duke.edu

Shivnath Babu
Duke University

shivnath@cs.duke.edu

Jeff Chase
Duke University

chase@cs.duke.edu

ABSTRACT
We present the NIMO system that automatically learns cost
models for predicting the execution time of computational-
science applications running on large-scale networked utili-
ties such as computational grids. Accurate cost models are
important for selecting efficient plans for executing these
applications on the utility. Computational-science applica-
tions are often scripts (written, e.g., in languages like Perl or
Matlab) connected using a workflow-description language,
and therefore, pose different challenges compared to model-
ing the execution of plans for declarative queries with well-
understood semantics. NIMO generates appropriate train-
ing samples for these applications to learn fairly-accurate
cost models quickly using statistical learning techniques.
NIMO’s approach is active and noninvasive: it actively de-
ploys and monitors the application under varying conditions,
and obtains its training data from passive instrumentation
streams that require no changes to the operating system or
applications. Our experiments with real scientific applica-
tions demonstrate that NIMO significantly reduces the num-
ber of training samples and the time to learn fairly-accurate
cost models.

1. INTRODUCTION
High-performance computing has become a key require-

ment for rapid advances in a range of sciences including
astrophysics, bioinformatics, systems biology, and climate
modeling [15, 31]. This new area of computational science
has given rise to many resource-intensive scientific applica-
tions. For example, modern high-energy particle detectors
generate up to 1015 bytes of data for analysis per year [4].
Other sources of important scientific applications include
BIRN [6], GEON [14], and SDSS [30].

The typical scientific application can be represented as a
workflow consisting of one or more batch tasks linked in a
directed acyclic graph (DAG) representing task precedence
and data flow (e.g., [5]). Complex scientific workflows are
often run on networked computing utilities—systems that

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

allocate compute, network, and storage resources on de-
mand from a large heterogeneous resource pool. Examples
of networked utilities include clusters of machines [8], com-
putational grids [13], utility data centers, PlanetLab, and
outsourced storage services.

A number of researchers have recently pointed out the
critical need for automated systems to manage scientific
workflows [15, 31]. Database technology is well-suited to
handle many aspects of workflow management as evident
from the number of WorkFlow Management Systems (WF
MSs) [31]—e.g., Griddb [23], GriPhyn [16], Kepler [2], and
Zoo [20]—that exist to provide functionality such as mod-
eling, execution, provenance, auditing, and visualization for
workflows.

One aspect of workflow management where database tech-
nology can help significantly is workflow planning that in-
volves finding an efficient plan for executing a workflow on
a networked utility. Workflow planning is both important
and challenging. Many scientific workflows perform complex
computations, process very large amounts of data, or both.
The difference in completion time can be on the order of
days between a good execution plan for a workflow and a
poor one [5]. These differences get magnified when work-
flows run on networked utilities composed of highly hetero-
geneous pools of geographically-distributed resources.

Example 1. Consider a motivating scenario where three
sites A, B, and C comprise a networked utility. Suppose a
user at site A wants to run a workflow composed of a single
task G on the utility. The input data for G is stored at A.
Site B has the fastest compute resources, but insufficient
storage to store G’s input data locally. Site C has faster
compute resources than A and sufficient local storage for
G’s data. Candidate plans to execute G include:

P1: Run G locally at A

P2: Run G at B, so G gets the best compute resource
available, but incurs remote I/O to A for data access

P3: Stage G’s data to C from A, and run G locally at C

The performance of these plans can vary significantly de-
pending on G’s characteristics and the underlying resource
characteristics. For example, plan P2 can be much more ef-
ficient than plans P1 and P3 if G does a lot of computation,
but relatively little I/O.

A plan for a workflow G specifies a resource assignment ~R
for each batch task in the workflow. A task may be a batch
application or a data-staging task interposed between a pair

of application tasks. ~R comprises the hardware resources—
compute, network, and disk storage—that are assigned si-
multaneously to run G. G’s performance can vary signifi-
cantly across different resource assignments. To construct
an effective resource assignment for G, the WFMS must
predict the interaction of G’s application-level characteris-
tics (e.g., compute-to-communication ratio) with resource
attributes (e.g., processor speed, cache size, and I/O sys-
tem behaviors). Specifically, the system needs a cost model

that can predict G’s total execution time on ~R, which is the
most common performance metric for scientific workflows.
Accurate cost models are important for selecting efficient
resource assignments.

Workflow planning is similar to query optimization in
database systems, but it poses an entirely new set of chal-
lenges. A task in a workflow G is typically a script in a pro-
gramming language like Perl or Matlab. Hence, a WFMS
usually has no prior knowledge about G’s resource usage
characteristics, or its performance sensitivity to the diverse
hardware platforms comprising the underlying networked
utility. Studies indicate that it is almost impractical to ask
scientists to use a declarative language like SQL, or a single
programming language, or even to add instrumentation code
to tasks to help with modeling and workflow planning [15,
31]. Consequently, G is a black-box to the WFMS, making
it challenging to generate an accurate cost model for G.

In previous work [32] we showed that accurate cost models
can be learned using statistical techniques if the right train-
ing data is given. We transformed the problem of generating
a cost model for a task G to that of learning a regression
model that fits a set of m sample data points collected by
running G on different resource assignments. Each sample
si (1 ≤ i ≤ m) is a point in a high-dimensional space. si

represents a complete run of G on a resource-assignment ~R,
and has the general form 〈ρ1, ρ2, . . . , ρk, T 〉, where each ρj is

a hardware attribute of ~R (e.g., processor speed or disk seek

time), and T is the total execution time of G on ~R. Given
the set of m samples s1, . . . , sm, an appropriate regression
model can be fitted to the training data to predict the exe-
cution time T from the values of attributes ρ1, ρ2, . . . , ρk.

However, the challenge of acquiring the right training data
remains unresolved. Three challenges arise in this setting:

• Cost of sample acquisition: Acquiring each sample may
have high overhead. For example, a sample 〈ρ1, . . .,
ρk, T 〉 ‘costs’ time T to acquire, which may be on the
order of hours or days for long-running scientific tasks.

• Curse of dimensionality: As the dimensionality of the
data increases, the number of samples needed to attain
a given level of accuracy can increase exponentially.

• Operating range of samples: The training sample set
must represent the entire operating range of the sys-
tem. A model learned from samples that cover only a
limited range may not give accurate predictions across
the entire system operating range.

Example 2. Acquiring samples corresponding to a mere
1% of a 5-dimensional space with 10 distinct values per di-
mension and average sample-acquisition time of 10 minutes,
takes around 7 days. If the space becomes 8-dimensional,
them the overall time becomes 19 years! However, if the
system knows or learns, e.g., that the task is CPU-intensive
for most resource assignments because it performs complex

with learned model
Maximum prediction accuracy

model
current best
Accuracy of

Fairly−accurate
model is ready
for use here

acceleration
with

without acceleration

Time

Active sampling

Active sampling

Passive
sampling

Figure 1: Active and accelerated learning

computations per unit of input data, then the dimensional-
ity and the learning time can be reduced significantly.

1.1 Contributions
• We present the NIMO system that learns cost mod-

els automatically for predicting task execution time on
heterogeneous resources. NIMO performs active sam-
pling of resource assignments to accelerate convergence
to an accurate cost model for a task G. Active sam-
pling acquires data to expose the relevant range of G’s
behavior by planning experiments. Each experiment
runs G on a candidate resource assignment deployed
in a workbench composed of heterogeneous resources.
Active sampling with acceleration seeks to reduce the
time before a reasonably-accurate cost model is avail-
able, as depicted in Figure 1. (The x-axis in Figure 1
shows the progress of time for collecting samples and
learning models, and the y-axis shows the accuracy of
the best model learned so far.)

• While NIMO actively deploys and monitors the task
under varying conditions, NIMO is noninvasive in that
it obtains its training data from passive instrumenta-
tion streams that require no changes to systems or ap-
plications. Specifically, NIMO can be applied to appli-
cations without changing application source or binary.

• We present experimental results that demonstrate how
NIMO reduces the time to learn fairly-accurate cost
models for real scientific applications.

2. NIMO
NIMO (NonInvasive Modeling for Optimization) is a work-

flow planning system that generates effective resource as-
signments for scientific workflows running on large-scale net-
worked utilities. Figure 2 shows NIMO’s overall architecture
consisting of: (i) a scheduler that enumerates, selects, and
executes plans for workflows; (ii) a modeling engine that
consists of an application profiler, a resource profiler, and a
data profiler that learns cost models for plans; and (iii) a
workbench where NIMO proactively runs plans to collect
samples for learning cost models. We describe each compo-
nent in turn.

2.1 Scheduler
NIMO’s scheduler is responsible for generating and exe-

cuting a plan for a given workflow G. The scheduler enu-
merates candidate plans for G, estimates the cost of each
plan, and chooses the execution plan with the minimum to-
tal execution time. A plan P for workflow G is an execution

Figure 2: Architecture of NIMO

strategy that specifies a resource assignment for each task in
G. In addition to the batch tasks in G, P may also interpose
additional tasks for staging data between each pair of batch
tasks in G. For example, a staging task Gij between tasks
Gi and Gj in the workflow DAG, copies the parts of Gj ’s
input dataset produced by Gi from Gi’s storage resource to
that of Gj . Example 1 illustrates such a staging task.

Let Gi, 1 ≤ i ≤ l be the tasks—including both batch
and staging tasks—in a plan P . Let ~Ri = 〈Ci, Ni, Si〉 be
the resource assignment made by P to task Gi. That is,
when the scheduler schedules Gi on the networked utility,
Gi executes on the compute resource Ci and accesses its
input and output datasets from the storage resource Si over
the network resource Ni. (Ni will be null if Si is local to Ci.)
In this paper, we focus on individual tasks Gi or graphs G
consisting of a single task. Our approach extends naturally
to workflows with known structure.

The scheduler uses a cost model M(G, I, ~R) to estimate
the execution time of G with input dataset I on a resource
assignment ~R. Recall that the tasks in a plan P have a DAG
relationship that restricts when each task can be scheduled.
From this DAG and the estimated execution time of each
task in P , the overall execution time of P can be estimated
in a straightforward manner.

2.2 Workbench
NIMO’s modeling engine automatically learns the cost

model for G by deploying G on selected resource assign-
ments, either to serve a real request, or proactively to use
idle or dedicated resources (a ‘workbench’; see Figure 2).
Currently, NIMO uses a workbench that consists of a het-
erogeneous pool of compute, network, and storage resources
to realize a variety of resource assignments. More details
of the specific resources in NIMO’s current workbench are
given in Section 4.1. The details of instantiating a specific
resource assignment in the workbench and conducting a run
of G are described in Algorithm 2 in Section 3.1.

NIMO’s modeling engine actively initiates new runs of G

on selected resource assignments in the workbench to ob-
tain sufficient training data for learning an accurate cost
model for G in the shortest possible time. Instrumentation
data is collected during a run, then aggregated to generate
a sample data point as soon as the run completes (Algo-
rithm 3 in Section 3.1). In keeping with NIMO’s objec-
tive of being noninvasive, the collection of instrumentation

data requires no changes to the tasks or the underlying sys-
tem. Instead, NIMO relies only on high-level metrics col-
lected by commonly-available monitoring tools: (i) proces-
sor and disk usage data is collected using the popular sar

utility [29]; and (ii) network I/O measures are derived from
the nfsdump/nfsscan tools [11].

2.3 Modeling Engine
NIMO’s modeling engine is responsible for generating a

cost model automatically for G. NIMO models the execution
of task G as an interleaving of compute phases, in which the
compute resource C is doing useful work, and stall phases,
in which the compute resource is stalled on I/O. For the
execution of task G with input dataset I on the resource
assignment ~R, we define:

• G’s compute occupancy to process I on ~R, denoted oa,
is the average time spent computing per unit of data
flow processed by G.

• G’s stall occupancy to process I on ~R, denoted os, is the
average time for which the compute resource is idle per
unit of data flow. Stall occupancy os = on + od, where
on and od capture the portions of occupancy caused
by delays in the network and storage (disk) resources
respectively.

G’s total execution time to process I on ~R is:

Execution T ime = D × (oa + os) = D× (oa + on + od) (1)

Here, D is the total data flow processed by G, i.e., the total
number of units of data read and written between the com-
pute and storage resources allocated to G. The goal of the
cost model M(G, I, ~R) is to predict the occupancies oa, on,
od and the total data flow D for G processing dataset I on
a resource assignment ~R, so that the execution time can be
estimated from Equation 1. Intuitively, task G’s execution
time to process I on ~R depends on:

• ~R’s hardware characteristics, that NIMO captures by
~R’s resource profile.

• I’s data characteristics, that NIMO captures by I’s
data profile.

• G’s application-level characteristics, that NIMO cap-
tures by G’s application profile.

The cost model M(G, I, ~R) uses these three profiles as in-

puts to estimate G’s execution time to process I on ~R. We
describe each of the profiles in turn.

Resource Profile: A resource profile ~ρ is a vector 〈ρ1, ρ2,
. . ., ρk〉 where each ρi measures the value of some perfor-

mance attribute of ~R. For example, for a compute resource,
the attributes may include processor speed, memory size,
memory latency, and memory bandwidth. In the single task
cases considered in this paper, the resource profile of a re-
source assignment ~R = 〈C, N, S〉 represents the compute,
network, and storage resources assigned to run the task.

Data Profile: The data profile ~λ of a task’s input dataset I
captures I’s data characteristics such as total size and data
distribution.

Application Profile: G’s application profile consists of

four predictor functions 〈fa(~ρ,~λ), fn(~ρ,~λ), fd(~ρ,~λ), fD(~ρ,~λ)〉

that predict G’s occupancies 〈oa, on, od〉 and total data flow

D on a resource assignment ~R and input dataset I, as a

function of ~R’s resource profile ~ρ and I’s data profile ~λ.

Cost Model M(G, I, ~R): Given task G’s application profile
〈fa, fn, fd, fD〉, the resource profile ~ρ of a candidate resource

assignment ~R, and input dataset I’s data profile ~λ, G’s ex-
ecution time to process I on ~R is:

Execution T ime = fD(~ρ,~λ)× (fa(~ρ,~λ)+fn(~ρ,~λ)+fd(~ρ,~λ))
(2)

2.4 Problem Setting and Assumptions
In this paper we focus on how NIMO automatically gen-

erates the cost model M(G, I, ~R) for a task. Our current
prototype of NIMO makes some limiting assumptions that
we plan to relax in future work:

• NIMO associates a specific dataset I along with a cost
model for a task G. That is, a separate cost model
is built for each task-dataset combination. The ad-
vantage is that the variable parameters in the predic-
tor functions in G’s application profile now consist of
the resource-profile attributes only, and not the data-
profile attributes. That is, the predictor functions have

the simpler form f(~ρ) instead of f(~ρ, ~λ). While the
problem of automatically learning G’s predictor func-
tions is simplified, it largely remains the same and non-
trivial, as seen in Section 3. The disadvantage is that
NIMO has to learn a new cost model for each new
input dataset for G. However, many scientific appli-
cations are often run repeatedly on the same input
dataset, and these runs tend to have similar resource-
usage behavior [25].

• Workflow planning using cost models in NIMO re-
quires that any resource that is shared simultaneously
among applications (e.g., a central storage server) is
virtualized, so that we can control what fraction of the
resource is used by each task. (This assumption is
made implicitly in the cost models in most database
systems.) While current sharing mechanisms do not
provide full performance isolation, or provide it for
only a subset of resources, resource virtualization is
an active research area and the deployable software
continues to improve (e.g., [10, 22]). Developing cost
models that account for the complex interactions gen-
erated by shared access to resources remains an area
for future work.

• NIMO requires that the resources assigned to a task
remain constant throughout the execution of the task.
This assumption is made implicitly in the cost models
in most database systems that we are aware of, and it
gives an interesting direction for future work.

2.5 Learning Profiles Proactively
We describe how NIMO automatically learns data pro-

files for input datasets and resource profiles for hardware
resources. The more challenging problem of learning appli-
cation profiles automatically is discussed in Section 3.

The data profile for an input dataset I in NIMO is cur-
rently limited to I’s total size in bytes. We obtain resource
profiles by running standard benchmark suites that are de-
signed to expose the differences that are most significant for
the performance of real applications. We use whetstone [9] to

calibrate processor speeds, lmbench [24] to calibrate mem-
ory latency and bandwidth, and netperf [28] to calibrate
the network latency and bandwidth between compute and
storage resources. We found in previous work that these
benchmarks are sufficient for making accurate predictions
in our environment [32]. Our approach is independent of
the specific benchmarks as long as they capture the under-
lying resource characteristics. Other researchers have: (1)
confirmed that simple benchmarks can be used in profil-
ing high-performance computing platforms [7]; (2) studied
benchmark selection for comprehensive coverage [34]; and
(3) devised strategies for robust resource profiling in the
presence of competition for shared resources [33].

3. LEARNING APPLICATION PROFILES
NIMO’s modeling engine uses active and accelerated learn-

ing to generate the predictor functions comprising G’s ap-
plication profile. Recall from Section 2.4 that the mod-
eling engine builds a separate cost model for each task-
dataset combination, so we consider the cost model for G
that processes an input dataset I, denoted G(I). To learn
G(I)’s cost model, we have to learn G(I)’s predictor func-
tions 〈fa(~ρ), fn(~ρ), fd(~ρ), fD(~ρ)〉, where ~ρ represents the re-

source profile of the resources ~R = 〈C, N, S〉 assigned to run
G(I). Specifically, fa(~ρ) predicts the compute occupancy oa

of G(I) on ~R as a function of a subset of the resource-profile

attributes 〈ρ1, ρ2, . . . , ρk〉 of ~R; similarly, fn(~ρ) predicts the
network-stall occupancy on, fd(~ρ) predicts the disk-stall oc-
cupancy od, and fD(~ρ) predicts the total data flow D.

If NIMO is given a reasonably large and representative
set of samples of the form 〈ρ1, ρ2, . . . , ρk, oa, on, od, D〉, then
the problem of learning accurate predictor functions 〈fa(~ρ),
fn(~ρ), fd(~ρ), fD(~ρ)〉 reduces to a statistical-learning problem
of fitting accurate regression functions to predict each of oa,
on, od, and D using subsets of attributes in ρ1, ρ2, . . . , ρk.
The challenge, however, is that NIMO does not initially have
a representative sample set for training. Instead, NIMO has
to collect each sample by running G(I) to completion on
a selected resource assignment in the workbench. The to-
tal overhead of collecting training samples can be extremely
high because of the curse of dimensionality—resource profile
~ρ = 〈ρ1, . . . , ρk〉 may contain many attributes (i.e., k may be
large)—and the high cost of data acquisition per sample—
collecting a sample 〈ρ1, . . . , ρk, oa, on, od, D〉 involves a com-

plete run of G on ~R, which could take up to hours or days
for some scientific tasks.

Algorithm 1 illustrates the main steps that NIMO uses
to learn G(I)’s application profile. (Details of these steps
are discussed in Sections 3.1–3.6.) The algorithm consists
of an initialization step and a loop. The loop continuously
refines the accuracy of the predictor functions by learning
from new samples acquired by running G(I) on new resource
assignments instantiated in the workbench.

3.1 Initialization
The initialization step of Algorithm 1 (Step 1) runs the

task G(I) on a designated reference resource assignment
~Rref = 〈Cref , Nref , Sref 〉. Based on this run, NIMO mea-
sures the compute, network-stall, and disk-stall occupancies—
called the reference occupancies—and the total data flow—
called the reference data flow—of G(I) on ~Rref . The details
of this step follow from: (i) Algorithm 2, which shows how

Algorithm 1: Active and accelerated learning of predic-
tor functions fa(ρ1, . . . , ρk), fn(ρ1, . . . , ρk), fd(ρ1, . . . , ρk),
and fD(ρ1, . . . , ρk) for task G(I)

1) Initialize: (Section 3.1) Obtain reference occupancies
oaref , onref , odref and reference data flow Dref for

G(I) on a reference resource assignment ~Rref ; Set
fa(~ρ) = oaref , fn(~ρ) = onref , fd(~ρ) = odref , and
fD(~ρ) = Dref (constant functions);

2) Design the next experiment: (Sections 3.2–3.4)
2.1 Select a predictor function for refinement,

denoted f (Section 3.2);
2.2 Should an attribute from ρ1, . . . , ρk be added to

the set of attributes already used in f? If yes,
then pick the attribute to be added (Section 3.3);

2.3 Select new assignment(s) to refine f using the set
of attributes from Step 2.2 (Section 3.4);

3) Conduct the chosen experiment: (Section 3.5)
3.1 Run G(I) in the workbench using the

assignment(s) picked in Step 2.3;
3.2 After each run, generate the corresponding

sample 〈ρ1, . . . , ρk, oa, on, od, D〉, where oa, on, od

are the observed occupancies and D is the
observed total data flow;

3.3 Learn f (and other predictor functions) from the
new sample set;

4) Compute current prediction error: (Section 3.6)
Compute current prediction error of each predictor. If
the overall error in predicting execution time is below
a threshold, and a minimum number of samples have
been collected, then stop, else go to Step 2.

NIMO runs a task on a resource assignment instantiated
in the workbench; and (ii) Algorithm 3, which shows how
NIMO computes the occupancies and total data flow for a
run. Specifically, the initialization step runs G(I) on ~Rref

using Algorithm 2, then it measures G(I)’s occupancies and

total data flow on ~Rref using Algorithm 3.
Once NIMO computes the reference occupancies in Step

1 of Algorithm 1, it initializes the predictor functions to
constant functions that predict the compute, network-stall,
and disk-stall occupancies and the total data flow of G(I)

on any resource assignment ~R as equal to the corresponding
reference values; which is a reasonable thing to do based on
the single run of G(I) so far. NIMO refines the predictor
functions in Algorithm 1 as it collects more sample data
points.

There are many ways in which NIMO can choose the refer-
ence assignment ~Rref = 〈Cref , Nref , Sref 〉 from the different
candidate assignments available in the workbench:

• Random assignment (Rand): Pick each of Cref , Nref ,
and Sref at random from among the corresponding
resources in the workbench.

• High-capacity assignment (Max): Pick the compute re-
source with the fastest processor speed, the network
resource with minimum latency, and the storage re-
source with maximum transfer rate.

• Low-capacity assignment (Min): Pick the compute re-
source with the slowest processor speed, the network

Algorithm 2: Running G(I) on ~R = 〈C, N, S〉

1) Instantiate a Network File System (NFS) server on

the storage resource S in ~R. Export a storage volume
from S containing G’s input dataset I, and mount this
volume on C. Set G(I) to access this volume;

2) Set routing tables in C and S so that all
communication happens via a specific router r running
NIST Net [32]. r is configured to emulate the network
specifications (e.g., latency and bandwidth) of S;

3) Start monitoring tools (Section 2.2) to measure the
execution time T and C’s utilization U (required by
Algorithm 3) for this run;

4) Start G(I) on C. When the task finishes, stop the
monitoring tools, and compute T and U .

Algorithm 3: Computing task G(I)’s occupancies on
~R = 〈C, N, S〉

1) Using Algorithm 2, run G(I) on ~R, and measure C’s
average utilization U , G(I)’s execution time T , and
the total data flow D (using network I/O traces);

2) Solve for oa and os from U = oa

oa+os
, D

T
= 1

oa+os
;

3) Use network I/O traces to derive the average time
spent per I/O in the network resource N and in the
storage resource S;

4) Split os = on + od into on and od in proportion to the
ratio of network and storage components of the
average I/O time from Step 3, to obtain 〈oa, on, od, D〉.

resource with maximum latency, and the storage re-
source with minimum transfer rate.

We evaluate these strategies experimentally in Section 4.2.

3.2 Guiding the Sequence of Exploration for
the Predictor Functions

In each iteration of Algorithm 1, Step 2.1 picks a specific
predictor function to refine by collecting more sample points
for training. We consider both static and dynamic schemes
to guide this sequence for exploring the predictor functions
across iterations.

Static Schemes: A static scheme first decides a total or-
dering of the predictor functions fa(~ρ), fn(~ρ), fd(~ρ), and
fD(~ρ), then defines a fixed traversal plan for picking the pre-
dictor function to refine in each iteration. NIMO currently
supports two techniques each for ordering and for traversal.
The two ordering techniques are:

• Domain-knowledge-based where a domain expert spec-
ifies a total order of the predictor functions to NIMO.
For example, the expert may know that the scientific
task G(I) is likely to be CPU-intensive for most re-
source assignments because G(I) performs complex
computations per unit of data in I, so fa(~ρ) should
come first in the total order and be refined first.

• Relevance-based where NIMO estimates the relevance
of the predictor functions on G(I) using the classic

Algorithm 4: Dynamic scheme for picking the predictor
function to refine in an iteration of Algorithm 1

1) Let s1, . . . , sm be the m training samples of the form
〈ρ1, ρ2, . . . , ρk, oa, on, od, D〉 collected so far;

2) Supplement each of the m samples with the predicted
compute occupancy oap from the current
fa(ρ1, . . . , ρk); similarly, the predicted network-stall
occupancy onp from the current fn(ρ1, . . . , ρk), the
predicted disk-stall occupancy odp from the current
fd(ρ1, . . . , ρk), and the predicted data flow Dp from
the current fD(ρ1, . . . , ρk);

3) Use the m actual and predicted value-pairs 〈oa, oap〉 to
compute the current prediction error Ea of
fa(ρ1, . . . , ρk) (see Section 3.6); similarly, compute En,
Ed, and ED from the respective 〈on, onp〉, 〈od, odp〉,
and 〈D, Dp〉 pairs;

4) Pick for refinement the predictor function with
maximum current prediction error.

Plackett-Burman design with foldover (PBDF) statis-
tical technique [34]. NIMO orders the predictor func-
tions in decreasing order of effect. To order the four
predictor functions using PBDF, NIMO performs eight
runs of G(I) on predefined resource assignments. Ap-
pendix A describes the PBDF technique.

The two techniques to traverse a given total order are:

• Round-robin where NIMO chooses the predictor func-
tions to refine across iterations in a round-robin fashion
from the given total order.

• Improvement-based where NIMO traverses the total
order from beginning to end, and keeps refining the
current predictor function until the reduction in the
prediction error obtained in the last iteration drops
below a predefined threshold. (The computation of
the current prediction error of a predictor function is
described in Section 3.6.) When the reduction in error
drops below the threshold, NIMO moves on to the next
predictor function in the total order. When it exhausts
all predictor functions, it resumes at the beginning of
the total order.

Dynamic Schemes: Dynamic schemes do not use a static
ordering of the predictor functions. Instead, the function
to refine in each iteration is based on the training samples
collected so far. NIMO currently considers one dynamic
scheme that, in each iteration, chooses to refine the predic-
tor function with the maximum current prediction error, as
illustrated in Algorithm 4.
We evaluate the different schemes in Section 4.3.

3.3 Adding New Attributes to Predictor Func-
tions

Step 2.2 of Algorithm 1 decides when to add a new resource-
profile attribute to a predictor function f(~ρ), and if so, which
of the k attributes from ρ1, . . . , ρk to add for maximum po-
tential reduction in f(~ρ)’s prediction error. (Recall from
Step 1 of Algorithm 1 that f(~ρ) is initially set to a constant
function having no variable parameters.) As in Section 3.2,

NIMO’s twofold strategy is to first define a total order over
the ρ1, . . . , ρk attributes with respect to f(~ρ), and then to
define a traversal plan based on this order to select attributes
for inclusion in f(~ρ).

Following a approach similar to the one in Section 3.2,
a total ordering of the resource-profile attributes ρ1, . . . , ρk

for predictor function f(~ρ) can be:

• Domain-knowledge-based where a domain expert speci-
fies a total ordering of ρ1, . . . , ρk for f(~ρ). For example,
the expert may know that the task has a purely sequen-
tial I/O pattern. Thus, the memory-size attribute may
have minimal effect on the compute occupancy oa, so
this attribute can be placed towards the end of the
total order for fa(~ρ).

• Relevance-based where NIMO first estimates the ef-
fect of each resource-profile attribute on the occupancy
predicted by f(~ρ) using PBDF (Appendix A). Then,
it orders the resource-profile attributes in decreasing
order of effect.

Based on the total ordering of attributes ρ1, . . . , ρk for a
predictor function f(~ρ), NIMO decides when to add the next
attribute in the total order to the current set of attributes
in f(~ρ). The improvement-based approach that NIMO uses
here adds the next attribute in the order when the reduction
achieved in prediction error during an iteration with the
current f(~ρ) (i.e., with the current set of attributes) falls
below a predefined threshold. When NIMO exhausts all
attributes, it resumes at the beginning of the total order.
We evaluate these alternatives in Section 4.4.

3.4 Selecting New Sample Assignments
Step 2.3 of Algorithm 1 chooses new assignments to run

task G(I) and collect new samples for learning. To create

a new assignment ~R, NIMO needs to select a value of each
attribute ρi in ~R’s resource profile, while accounting for:

1. Covering the full operating range of ρi to avoid learn-
ing functions that are accurate only for a narrow range
of ρi’s values. For example, limited variation of pro-
cessor speed may fail to expose latency-hiding behav-
ior due to prefetching [32]. If the processor speed is
sufficiently low, then the rate of I/O requests from the
processor may be low enough that prefetching can hide
the I/O latency completely.

2. Capturing the important interactions among attributes.
In the above example, the point where latency-hiding
behavior shows up as the processor speed is reduced
depends on the network latency between the compute
and storage resources. Therefore, the effect of chang-
ing processor speed on the occupancy oa of the com-
pute resource may depend on the value of network
latency [32], representing an interaction between the
processor speed and network latency attributes of the
resource profile. This interaction may or may not have
a significant effect on overall execution time depending
on the task’s I/O characteristics.

Figure 3 shows the range of techniques for selecting new sam-
ples that we are currently experimenting with in NIMO. The
techniques are shown in terms of their general performance
and tradeoff on the two metrics above, namely, covering the

Coverage of

Low
Low High

High

assumption)

(Basic
PB−design) foldover)

(PB−design with

(Full factorial
design)

(Independence

operating

−I2

max −I max −I

−I21 2

1 maxL L

L L

range of
each attribute

Space captured by
fractional factorial design

(L)

Capturing interactions among attributes (I)

Figure 3: Techniques for selecting new sample as-
signments (PB = Plackett-Burman)

Algorithm 5: Selecting the next sample assignment us-
ing Lmax-I1

1) Let f(~ρ) be the current predictor function chosen for
refinement in Step 2.1 of Algorithm 1. Let ρr be the
attribute most recently added to f(~ρ) in Step 2.2 of
Algorithm 1. Let IN ⊂ ~ρ be the set of attributes
already considered for addition in f(~ρ), and OUT ⊂ ~ρ
be the set of attributes not considered for addition in
f(~ρ). Let ~Rref be the designated reference assignment
chosen in the initialization step of Algorithm 1;

2) Lmax-I1 chooses the new assignment as follows:

1. All attributes in IN and OUT are set to the
corresponding values in ~Rref ;

2. The value of ρr is set to the next unselected value
from the binary-search sequence—lo, hi, lo+hi

2
,

3lo+hi
4

, lo+3hi
4

, 7lo+hi
8

, 5lo+3hi
8

, and so on—where
lo and hi are the minimum and maximum values
ρr can take. That is, lo is chosen for the first
assignment, hi is chosen for the next assignment,
and so on.

operating range of attributes, and capturing significant in-
teractions among attributes. We use an Lα-Iβ naming for-
mat, where (i) α represents the number of significant distinct
values, or levels, in the attribute’s operating range covered
by the technique, and (ii) β represents the largest degree of
interactions among attributes guaranteed to be captured by
the technique. Among these techniques, the ones for which
we report experimental results in Section 4.5 are:

• Lmax-I1: This technique, described in Algorithm 5,
systematically explores all levels of a newly-added at-
tribute using a binary-search-like approach. However,
it assumes that the effects of attributes are indepen-
dent of each other, so it chooses values for attributes
independent of one another.

• L2-I2: This technique is an adaptation of PBDF which
we describe in Appendix A. (PBDF is an example of
the popular fractional factorial design in statistics [21,
34].) Given the total number of attributes, L2-I2 spec-

Algorithm 6: Learning G(I)’s compute occupancy pre-
dictor function fa(~ρ)

1) Suppose m runs of G have been conducted, where run

i is on ~Ri. Let 〈ρ1i
, . . . , ρji

〉 be the subset of ~Ri’s
resource-profile attributes added to fa(~ρ) so far;

2) Use Algorithm 3 to generate m training data points
where the ith point is 〈ρ1i

, . . . , ρji
, oai

〉;

3) Normalize the training points using a baseline

assignment ~Rb with resource profile ~ρb. (Currently,

NIMO chooses ~Rb = ~Rref .) Let G’s compute

occupancy on ~Rb be oab
, so the ith normalized

training data point is 〈
ρ1i

ρ1b

, . . . ,
ρji

ρjb

,
oai

oab

〉;

4) Use regression on the training data to learn a function
F (~ρ) that predicts the value of oa

oab

from the

normalized values of ρ1, . . . , ρj . Set fa(~ρ) = oab
×F (~ρ).

ifies the number of samples required and the values of
attributes in each sample. L2-I2 captures two levels
(e.g., low and high [34]) per attribute and up to pair-
wise interactions among attributes.

3.5 Performing the Selected Experiment
In Step 3.1 of Algorithm 1, NIMO instantiates the as-

signment selected in Step 2.3 in the workbench and runs
the task; details of running task G(I) on a resource assign-

ment ~R are given in Algorithm 2. The compute, network-
stall, and disk-stall occupancies, and the total data flow,
are collected from the run as described in Algorithm 3.
These measures give a new sample data point of the form
〈ρ1, . . . , ρk, oa, on, od, D〉. NIMO then analyzes all the sam-
ple data points collected so far, including the one collected
most recently, to refine the predictor function chosen in Step
2.1 of Algorithm 1 with its current attribute set as chosen in
Step 2.2. If the latest run provides a new sample for another
predictor f based on the current set of attributes included in
f , then NIMO refines f as well. The details of this step are
given in Algorithm 6 for fa; fn, fd, and fD can be learned
similarly.

3.6 Computing Current Prediction Error
NIMO considers two techniques for computing the current

prediction error of a predictor function f(~ρ):

1. Cross-validation: In this technique, NIMO uses leave-
one-out cross-validation to estimate the current pre-
diction error of f(~ρ) [1]. For each sample s out of the
m samples collected so far, NIMO learns f(~ρ) using all
samples other than s (using Algorithm 6). NIMO then
uses f(~ρ) to predict the corresponding occupancy for
s, and computes the absolute percentage error. For ex-
ample, if the predictor function is fa(~ρ), and the actual
and predicted occupancies for s are oa and oap respec-

tively, then the absolute percentage error is
|oa−oap|

oa
×

100%. The average of the m individual values of abso-
lute percentage error, denoted Mean Absolute Percent-
age Error (MAPE), is the current prediction error.

2. Fixed test set: In this technique, NIMO designates a
small subset of resource assignments in the workbench

as an internal test set. The test assignments may be a
random subset of the possible assignments in the work-
bench, or chosen more robustly; different choices for
internal test set selection are evaluated in Section 4.6.
When a fixed test set is used, the initialization step
of Algorithm 1 begins by running the task on each as-
signment in the test set. NIMO computes the current
prediction error of f(~ρ) as the MAPE in predicting oc-
cupancy on each assignment in the test set. Note that
the samples collected for this test set are never used
as training samples for any predictor function.

4. EXPERIMENTAL EVALUATION
Our experimental evaluation has two goals: (i) to evaluate

the different algorithmic choices introduced in Section 3; and
(ii) to show that NIMO significantly reduces the overall time
to learn fairly-accurate cost models.

4.1 Setup
Applications We consider four biomedical scientific tasks
to evaluate active and accelerated learning in NIMO. The
four tasks are BLAST [3], NAMD [26], CardioWave [27],
and fMRI [19]. BLAST, NAMD, and CardioWave are typi-
cally CPU-intensive, while fMRI is typically I/O-intensive.1

In this paper, we use BLAST by default for demonstrating
the performance of our algorithms.
Workbench NIMO’s workbench (Section 2.2) in our ex-
periments consists of five compute nodes with speeds: 451
MHz, 797 MHz, 930 MHz, 996 MHz, and 1396 MHz; cache
sizes: 256 KB or 512 KB, and the Intel PIII architecture.
We use the boot parameters on the compute nodes to vary
the memory size of the nodes across 5 sizes ranging from 64
MB to 2 GB. The tasks run on the Linux operating system
with the 2.4.25 kernel. We used NIST Net to impose 6 dif-
ferent network round-trip latencies in the range 0 − 18 ms
and 10 different network bandwidths in the range 20 Mbps
to 100 Mbps. The underlying heterogeneity gives us a large
sample space of resource assignments. For example, with 5
CPU speeds, 5 memory sizes, and 6 network latencies, we
have a maximum of 150 candidate resource assignments for
each batch task on our workbench. We choose assignments
from these 150 candidates in our experiments.
Regression functions Recall from Algorithm 6 that NIMO
uses regression to learn the predictor functions in the cost
model. NIMO currently uses multivariate linear regression
[21]. (More sophisticated regression techniques, e.g., trans-
form regression [35] can be applied in NIMO without chang-
ing the overall approach, and we plan to do so in future
work.) A typical predictor function in our experiments has
the form: f(~ρ) = a1g1(ρ1) + a2g2(ρ2) + · · · + akgn(ρk) + c,
where each ai is a regression coefficient, each ρi is a resource-
profile attribute, each gi is a transformation function, and
c is a constant. Apart from the default g(ρi) = ρi trans-
formation, we also consider reciprocal transformations. For
example, a reciprocal transformation is applied to the CPU
speed attribute because occupancy values are inversely pro-
portional to CPU speed. The experiments reported in this
section focus on learning the three occupancy predictor func-
tions fa, fn, and fd automatically, and assume that the
data-flow predictor fD is known.

1Technically, a task can be CPU- or I/O-intensive depending
on the underlying resource assignment.

Step Alternatives

Initialization Min∗, Rand, Max
Predictor
refinement

Static + Round-Robin∗, Static +
Improvement-based, Dynamic

Attribute addition Relevance-based (PBDF)∗, Static
Sample selection Lmax-I∗

1 , L2-I2

Prediction error Cross-Validation∗, Fixed Test Set
(Random), Fixed Test Set (PBDF)

Table 1: Choices for steps of Algorithm 1. ∗ denotes
the default in experiments unless otherwise noted

Evaluation The metric we use to report the current accu-
racy of a cost model M in our experiments is M ’s Mean
Absolute Percentage Error (Section 3.6) in predicting total
execution time on an external test set of 30 resource assign-
ments chosen randomly from the workbench. Note that the
external test set is different from the internal test set used by
NIMO to compute the current prediction error (Section 3.6),
and is never exposed to NIMO for training or testing.

Accelerated learning of predictor functions depends on the
choices made at the different steps of Algorithm 1 as ex-
plained in Section 3. We evaluate various alternatives for
each of the following five steps:

1. Initialization: The reference assignment that decides
the starting point in the resource assignment search
space (Section 3.1)

2. Predictor refinement: The order and traversal NIMO
uses to refine the predictor functions (Section 3.2)

3. Attribute addition: The order and traversal NIMO uses
to add attributes to each predictor function (Section 3.3)

4. Sample selection: The choice of value for each resource-
profile attribute to generate a new sample assignment
for a run of the task (Sections 3.4 and 3.5)

5. Prediction error: The technique to compute the cur-
rent prediction error at any point in time (Section 3.6)

While evaluating any of these 5 factors, we fix the choices
for the other 4 factors to defaults as shown in Table 1.

4.2 Initialization
The reference assignment serves several purposes in NIMO:

(i) starting sample assignment for the learning algorithm
(Algorithm 1); (ii) baseline for normalizing training samples
(Algorithm 6); and (iii) reference for setting attribute values
during sample selection (Algorithm 5). Different reference
assignments may lead to completely different training sam-
ples, and hence, different MAPE statistics. We begin our
experimental results with the evaluation of alternatives from
Section 3.1 for choosing the reference assignment. Note that
we fix the choice for each other step of Algorithm 1 to the
default given in Table 1.

Figure 4 shows the impact of three alternatives for choos-
ing the reference assignment on the overall accuracy and
convergence time of the automatically-learned cost model
for BLAST : (a) a randomly chosen assignment (Rand); (b) a
high capacity assignment (Max); and (c) a low capacity as-
signment (Min). Each point in the figure corresponds to the
MAPE when a new sample is added to the training data or
a new attribute is added to a predictor during learning.

We can make the following observations from Figure 4:
(i) the plots start at different times; (ii) the MAPE values

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700

Me
an

 Ab
so

lut
e P

erc
en

tag
e E

rro
r

Learning Time (mins)

Max
Rand

Min

Figure 4: Impact of different alternatives for choos-
ing the reference assignment (BLAST application)

do not converge smoothly, e.g., there may be a sharp drop
when a new training point is added; and (iii) while Max
converges in the shortest time to a reasonably-accurate cost
model, Min and Rand converge to models with lower errors.
We explain these observations next.

Among the three alternatives, the reference assignment in
Max has the maximum resource capacity, so it results in the
shortest time to finish the first run and generate a training
sample. Also, note that in the default Lmax-I1 strategy
for sample selection, only one attribute in any new sample
assignment is set to a value different from the corresponding
value in the reference assignment. Hence, Max will generate
new training samples at a faster rate than Min or Rand.

The nonsmooth nature of the plots in Figure 4 is a conse-
quence of NIMO’s online exploration of the space of resource
assignments to learn predictor functions with the right at-
tributes. The prediction errors may drop sharply, e.g., when
a relevant attribute is added to a predictor. Recall that the
MAPE values in Figure 4 are based on an external test set
that is never exposed to NIMO for training or testing.

Min and Rand converge to cost models with lower errors
than Max. Our hypothesis is that the set of training samples
produced when Min or Rand is used is more representative
of the space of sample assignments than when Max is used.
That is, Min and Rand may be leading to training sets that
capture the operating range of relevant attributes and the
significant interactions among attributes better.

4.3 Exploration Sequence for Predictors
The sequence in which NIMO explores predictor functions

for refinement across iterations of Algorithm 1 determines
the time to learn accurate cost models. In Figure 5 we eval-
uate the static and dynamic strategies from Section 3.2 for
guiding predictor refinement through ordering and traver-
sal. As usual, choices for the other steps are the defaults
given in Table 1. The strategies we compare in Figure 5
are: (i) static order fd, fa, fn + round-robin traversal; (ii)
static order fd, fa, fn + improvement-based traversal; and
(iii) dynamic ordering and traversal.

The main observations from Figure 5 are: (i) round-robin
traversal performs better than improvement-based traversal
for static ordering; and (ii) the dynamic strategy takes the
longest to converge and shows the most nonsmooth behav-
ior.

Improvement-based traversal of predictors is sensitive to
the order in which the predictors are refined as well as the
improvement threshold used (Section 3.2). In Figure 5, the
static order is the nonoptimal fd, fa, fn order—the actual

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800

Me
an

 Ab
so

lut
e P

erc
en

tag
e E

rro
r

Learning Time (mins)

Static + Round-Robin
Static + Improvement-based

Dynamic

Figure 5: Impact of different alternatives for refining
the predictor function (BLAST application)

relevance order computed using PBDF is fn, fa, fd—and
the improvement threshold is 2%—i.e., we move to the next
predictor in the order when the reduction in prediction er-
ror with the current predictor falls below 2%. The MAPE
of the improvement-based strategy remains high until fn

starts being refined (around 400 minutes), when it drops
sharply. On changing the static order to fn, fa, fd, the
improvement-based strategy learns an accurate cost model
quickly (as shown by the Min plot in Figure 4). Round-
robin traversal of the static order acquires samples for each
predictor in turn, so it is less sensitive to the correctness of
the order or the threshold.

The accuracy-driven dynamic strategy performs the worst
in Figure 5. Recall from Section 3.2 that the dynamic strat-
egy chooses to refine the predictor with the maximum cur-
rent prediction error. In Figure 5, the dynamic strategy gets
stuck initially in a local minima where it keeps refining fa

until all samples for the attributes in fa are exhausted, and
fn starts being refined (around 550 minutes). The problem
with the dynamic strategy is that the current prediction er-
ror of a predictor f is not representative of f ’s relevance to
the total task execution time.

4.4 Adding New Attributes to Predictors
Accurate learning of predictor functions can happen only

when relevant attributes are added quickly to the functions.
Recall from Section 3.4 that the attributes in the predic-
tor function currently chosen for refinement dictate which
sample assignments are selected for training. Our next ex-
perimental results show that adding attributes to predictors
in an incorrect order can delay convergence to accurate cost
models. We consider the two alternatives from Section 3.3
for determining the order in which attributes are added to
predictors:

• Relevance-based ordering that determines relevant at-
tributes and their order using PBDF as: (i) fa—cpu
speed, memory size, (ii) fn—network latency, memory
size, and (iii) fd—network latency.

• Static ordering set as: (i) fa—network latency, mem-
ory size, cpu speed, (ii) fn—cpu speed, memory size,
network latency, and (iii) fd—cpu speed, memory size,
network latency. The static ordering is kept different
from the relevance-based ordering to show the impor-
tance of adding attributes in the right order.

Figure 6 compares the two alternatives. While the relevance-
based order learns an accurate cost model quickly, the in-

 0

 20

 40

 60

 80

 100

 120

 140

 100 200 300 400 500 600 700 800

Me
an

 Ab
so

lut
e P

erc
en

tag
e E

rro
r

Learning Time (mins)

Relevance-based Order (PBDF)
Incorrect Static Order

Figure 6: Impact of alternatives for adding new at-
tributes to a predictor function (BLAST applica-
tion)

 5

 10

 15

 20

 25

 30

 100 200 300 400 500 600 700 800

Me
an

 Ab
so

lut
e P

erc
en

tag
e E

rro
r

Learning Time (mins)

LMax-I1
L2-I2

Figure 7: Impact of alternatives for selecting new
sample assignments (BLAST application)

correct static order causes nonsmooth behavior and slow
convergence.

4.5 Selecting New Sample Assignments
A good sample-selection strategy must cover the operat-

ing range of relevant attributes and expose all significant
interactions among attributes while acquiring only a small
number of samples. We evaluate two strategies from Sec-
tion 3.4 for sampling new assignments: Lmax-I1 and L2-
I2. Recall that the Lmax-I1 strategy covers the operating
range of relevant attributes, but it may fail to expose sig-
nificant interactions among attributes. The L2-I2 strategy
adds training samples one at a time from the design matrix
specified by PBDF (Appendix A). L2-I2 considers only two
levels from the operating range of each attribute, but it can
expose significant two-way interactions among attributes.

Figure 7 compares the two alternatives. Here we observe
that Lmax-I1 converges quickly to an accurate cost model,
while L2-I2 fails to converge. Our hypothesis is that the sim-
ple Lmax-I1 strategy is enough to expose any significant in-
teractions among attributes for BLAST. On the other hand,
with only two levels considered for each attribute, L2-I2 fails
to obtain good regression functions for the predictors. We
are now exploring sampling schemes that can guarantee the
capture of significant interactions among attributes and also
provide good coverage of the operating range of relevant at-
tributes.

4.6 Computing Current Prediction Error
An important component of NIMO’s accelerated learn-

ing algorithm is the computation of current prediction er-
ror for each predictor. This error is used by other steps of

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000 1100

Me
an

 Ab
so

lut
e P

erc
en

tag
e E

rro
r

Learning Time (mins)

Fixed Test Set (Random)
Cross-Validation

Fixed Test Set (PBDF)

Figure 8: Impact of alternatives for computing the
current prediction error (BLAST application)

Algorithm 1, e.g., by the improvement-based traversal and
the dynamic strategy for choosing the predictor function
to refine. We consider the two strategies from Section 3.6
for computing the prediction error: (i) leave-one-out cross-
validation using all samples collected so far; and (ii) using
a fixed internal test set. The fixed test set is chosen in two
ways: (a) a set of 10 assignments chosen randomly from the
space of possible assignments; and (b) a set of 8 assignments
chosen from the samples specified by PBDF. The results are
shown in Figure 8. Here, we use the accuracy-driven dy-
namic strategy for refining the predictor functions to study
the impact of internal test sets on MAPE. All other factors
are set to their defaults as shown in Table 1.

Figure 8 shows the strengths and weaknesses of the ap-
proaches. Compared to fixed test sets, cross-validation starts
producing results earlier, but it shows nonsmooth behavior
and slow convergence. Cross-validation produces its initial
error estimates from the very few samples collected so far,
causing the observed nonsmooth behavior. However, these
estimates get more accurate over the course of active learn-
ing as more samples are collected. The fixed test set ap-
proach requires an upfront investment of time to obtain the
test samples, which delays the start of the learning pro-
cess. However, fixed test sets give more robust estimates of
prediction error because these sets are representative of the
total sample space in terms of capturing operating ranges
and attribute interactions.

4.7 Summary of Experimental Results
We apply NIMO’s active and accelerated learning to three

real biomedical applications other than BLAST. Table 2
shows the time to learn an accurate cost model and the cor-
responding MAPE values for all four applications. The table
shows that as the attribute space gets larger, NIMO reduces
the time to learn fairly-accurate cost models by an order
of magnitude compared to approaches that first sample a
significant part of the entire space and then build models
all-at-once (the active sampling without acceleration strat-
egy in Figure 1).

We summarize the results of our experiments evaluating
the algorithmic choices presented in Section 3:

• The Min approach tends to select reference assign-
ments that produce training sets that are represen-
tative of the total sample space.

• Unlike the improvement-based strategy, round-robin
traversal is not sensitive to the (static) ordering of
predictors, nor does it require a predefined threshold.

Appl. #Attrs MAPE NIMO’s Learning Time (hrs) Learning Time for All Samples (hrs) Sample Space Used (%)

BLAST 3 10 12 130 10
fMRI 3 10 4 112 10
NAMD 2 4 2 16 25
C. Wave 2 10 2 16 25

Table 2: Gains from active and accelerated learning

Round-robin traversal also avoids the local-optima prob-
lem of dynamic approaches that are based on current
prediction error.

• Adding attributes in relevance order based on PBDF
is a good approach for adding new attributes to pre-
dictors. Other attribute orders may significantly delay
convergence to accurate cost models.

• In our experiments, the Lmax-I1 strategy for select-
ing new sample assignments performs better than L2-
I2 mainly because of the limited attribute operating
range considered by L2-I2.

• A fixed internal test set, chosen randomly or using
PBDF, is a reasonable choice for computing current
prediction error. Cross-validation-based approaches
show nonsmooth behavior and slow convergence.

5. RELATED WORK
The importance of applying database technology to man-

age the modeling, execution, provenance, auditing, and vi-
sualization of scientific workflows is emphasized in, e.g., [15,
31]. Traditional work on cost modeling in centralized and
distributed relational databases (e.g., [17]) assume that the
execution plans are composed of operators belonging to a
small well-defined family of operators. This assumption does
not hold for scientific workflows.

Recently, statistical learning methods have been used to
develop cost models for: (i) complex user-defined functions,
e.g., [18]; (ii) remote autonomous database systems in the
multidatabase setting, e.g., [36]; and (iii) complex XML op-
erators [35]. The general approach is to first identify a set
of query and data features that potentially determine op-
erator costs, and then to use given training data to learn
the relationship among the values of the identified features
and operator cost. NIMO differs from this category of work
in two ways: (i) it addresses the problem of automatically
acquiring the right training data to minimize the overall
learning time; and (ii) it considers the applications as black-
boxes and relies only on passive measurement streams to
make our work more widely applicable.

The theory of design of experiments (DOE) is a well es-
tablished branch of statistics that studies planned investi-
gation of factors affecting system performance [21]. Active
learning [12] from the machine-learning literature deals with
the issue of picking the next sample that provides the most
information to maximize the accuracy of an objective func-
tion. NIMO uses both DOE and active learning in an iter-
ative fashion for learning cost models for scientific applica-
tions. More recently, the computer architecture community
has also looked at DOE for improving system simulation
methodology [34].

6. CONCLUSIONS AND FUTURE WORK
We presented the NIMO system that uses an active and

accelerated approach for learning cost models for predict-
ing the execution time of computational-science applications

running on large-scale networked utilities. NIMO is nonin-
vasive in that it uses training data from passive instrumenta-
tion streams collected using common profiling tools, requir-
ing no changes to the operating system or applications. Our
experimental results indicate that NIMO can learn fairly-
accurate cost models quickly for real scientific applications.
There are many avenues for future work:

• To be fully self-managing, NIMO needs an algorithm
that can automatically select the best combination of
choices for each step of Algorithm 1 for a given appli-
cation.

• To handle an application A whose resource usage is
highly data dependent, NIMO needs to capture the
data dependency using attributes in the data profile
of A’s input dataset. Identifying the right set of at-
tributes in the data profile for a black-box application
is a challenging problem.

• NIMO currently makes some limiting assumptions re-
garding cost models that need to be addressed, e.g.,
predictors use multivariate linear regression with pre-
determined transformations and do not account for re-
source sharing.

7. REFERENCES
[1] A. Allen. Probability, Statistics, and Queuing Theory

with Computer Science Applications. Academic Press,
1990.

[2] I. Altintas, C. Berkley, E. Jaeger, M. Jones,
B. Ludascher, and S. Mock. Kepler: An Extensible
System for Design and Execution of Scientific
Workflows. In Proc. of SSDBM, Jun 2004.

[3] S. Altschul, T. Madden, A. Schaffer, J. Zhang,
Z. Zhang, W. Miller, and D. Lipman. Gapped BLAST
and PSI-BLAST: A New Generation of Protein
Database Search Programs. Nucleic Acids Research,
25:3389–3402, 1997.

[4] Grid Physics Network in Atlas.
www.usatlas.bnl.gov/computing/grid/griphyn.

[5] J. Bent, D. Thain, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, and M. Livny. Explicit Control in a
Batch-Aware Distributed File System. In Proc. of the
USENIX Symp. on Networked Systems Design and
Implementation, Mar 2004.

[6] Biomedical Informatics Research Network.
www.nbirn.net.

[7] L. Carrington, M. Laurenzano, A. Snavely,
R. Campbell, and L. Davis. How Well Can Simple
Metrics Represent the Performance of HPC
Applications? In Proc. of the ACM/IEEE Conf. on
Supercomputing, Nov 2005.

[8] Condor High Throughput Computing.
www.cs.wisc.edu/condor.

[9] H. J. Curnow and B. A. Wichmann. A Synthetic
Benchmark. The Computer Journal, 19(1):43–49, Feb
1976.

[10] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
I. Pratt, A. Warfield, P. Barham, and R. Neugebauer.
Xen and the Art of Virtualization. In Proc. of the
ACM Symp. on Operating Systems Principles, Oct
2003.

[11] D. Ellard and M. Seltzer. New NFS Tracing Tools and
Techniques for System Analysis. In Proc. of the
Annual Large Installation System Administration
Conf., Oct 2003.

[12] V. Fedorov. Theory of Optimal Experiments.
Academic Press, 1972.

[13] I. Foster and C. Kesselman. The Grid2: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann,
2004.

[14] Cyberstructure for the Geosciences.
www.geongrid.org.

[15] J. Gray, D. Liu, M. Nieto-Santisteban, A. Szalay,
G. Heber, and D. DeWitt. Scientific Data
Management in the Coming Decade. Technical Report
MSR-TR-2005-10, Microsoft Research, Jan 2005.

[16] Grid Physics Network. www.griphyn.org.

[17] L. Haas, M. Carey, M. Livny, and A. Shukla. Seeking
the Truth About Ad Hoc Join Costs. VLDB Journal,
3(6):241–256, 1997.

[18] Z. He, B. Lee, and R. Snapp. Self-Tuning UDF Cost
Modeling Using the Memory-Limited Quadtree. In
Proc. of EDBT, Mar 2004.

[19] S. A. Huettel, A. W. Song, and G. McCarthy.
Functional Magnetic Resonance Imaging. Sinauer
Associates, Inc., 2004.

[20] Y. Ioannidis, M. Livny, A. Ailamaki, A. Narayanan,
and A. Therber. Zoo: A Desktop Experiment
Management Environment. In Proc. of SIGMOD, Jun
1997.

[21] R. Jain. The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling. John Wiley
& Sons, May 1991.

[22] W. Jin, J. S. Chase, and J. Kaur. Interposed
Proportional Sharing for a Storage Service Utility. In
Proc. of the Joint Intl. Conf. on Measurement and
Modeling of Computer Systems, Jun 2004.

[23] D. Liu and M. Franklin. The Design of Griddb: A
Data-Centric Overlay for the Scientific Grid. In Proc.
of VLDB, Sep 2004.

[24] L. McVoy and C. Staelin. lmbench: Portable Tools for
Performance Analysis. In Proc. of the USENIX
Annual Technical Conf., Jan 1996.

[25] B. K. Pasquale and G. C. Polyzos. A Static Analysis
of I/O Characteristics of Scientific Applications in a
Production Workload. In Proc. of ACM/IEEE Conf.
on Supercomputing, Nov 1993.

[26] J. C. Phillips, R. Braun, et al. Scalable Molecular
Dynamics with NAMD. Journal of Computational
Chemistry, 26:1781–1802, 2005.

[27] J. Pormann, J. Board, D. Rose, and C. Henriquez.
Large-Scale Modeling of Cardiac Electrophysiology. In
Proc. of Computers in Cardiology, Sep 2002.

[28] Netperf: A Network Performance Benchmark.
www.cup.hp.com/netperf/NetperfPage.html.

[29] Performance Monitoring Tools for Linux.
perso.wanadoo.fr/sebastien.godard.

[30] Sloan Digital Sky Survey. www.sdss.org.

[31] S. Shankar, A. Kini, D. DeWitt, and J. Naughton.
Integrating Databases and Workflow Systems.
SIGMOD Record, 3(34):5–11, 2005.

[32] P. Shivam, S. Babu, and J. Chase. Learning
Application Models for Utility Resource Planning. In
Intl. Conf. on Autonomic Computing, Jun 2006.

[33] S. Vazhkudai and J. M. Schopf. Using Regression
Techniques to Predict Large Data Transfers. Intl.
Journal of High Performance Computing Applications,
cs.DC/0304037, 2003.

[34] J. J. Yi, D. J. Lilja, and D. M. Hawkins. A
Statistically Rigorous Approach for Improving
Simulation Methodology. In Proc. of Intl. Symp. on
High Performance Computer Architecture, Feb 2003.

[35] N. Zhang, P. Hass, V. Josifovski, G. Lohman, and
C. Zhang. Statistical Learning Techniques for Costing
XML Queries. In Proc. of Intl. Conf. on VLDB,
Aug-Sep 2005.

[36] Q. Zhu and P. Larson. Building Regression Cost
Models for Multidatabase Systems. In Proc. of PDIS,
1996.

APPENDIX
A. PLACKETT-BURMAN DESIGN

We describe the Plackett-Burman design with foldover
(PBDF) technique to rank N independent parameters X1,
. . ., XN based on their effect on a dependent parameter Y .
PBDF requires that N + 1 be a multiple of 4, with dummy
parameters added as needed. PBDF performs a set of runs
where the configuration of X1, . . . , XN for each run is given
by a specific design matrix. The general matrix is described
in [34]. Here, we give an example. Table 3 shows a part of
the design matrix when N = 7. This matrix has 2 ∗ 8 = 16
rows because 8 is the nearest higher multiple of 4 for N = 7,
and PBDF requires twice that many rows. Each row speci-
fies the configuration of X1, . . . , XN for a run. The value of
Y given by the run is also shown. A “+” (“−”) value for a
parameter represents a value that is higher (lower) that the
normal range of values for that parameter.

X1 X2 X3 X4 X5 X6 X7 Y

+1 +1 +1 -1 +1 -1 -1 y1

-1 +1 +1 +1 -1 +1 -1 y2

-1 -1 +1 +1 +1 -1 +1 y3

· ·
-1 -1 +1 -1 +1 +1 -1 y15

+1 +1 +1 +1 +1 +1 +1 y16

Table 3: Design matrix for PBDF

After performing all 16 runs, the effect of each parameter
on Y is computed by multiplying the parameter’s value in
each row with the value of Y for the row, taking the sum
across all rows, and taking the absolute value of the sum.
For example, the effect of parameter X1 is |y1 − y2 − y3

· · · − y15 + y16|. Finally, the parameters are ranked in
decreasing order of their effect on Y .

