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Abstract— Shared computing utilities allocate compute, net-
work, and storage resources to competing applications on de-
mand. An awareness of the demands and behaviors of the hosted
applications can help the system to manage its resources more
effectively. This paper proposes an active learning approach
that analyzes performance histories to build predictive models
of frequently used applications; the histories consist of measures
gathered from noninvasive instrumentation on previous runs with
varying assignments of compute, network, and storage resources.
An initial prototype uses linear regression to predict application
interactions with candidate resources, and combines them to
forecast completion time for a candidate resource assignment.
Experimental results from the prototype show that the mean
forecasting errors range from 1% to 11% for a set of batch tasks
captured from a production cluster. Examples illustrate how a
system can use the learned models to guide task placement and
data staging.

I. INTRODUCTION

Resource provisioning and placement is a central challenge
for computing utilities—systems that allocate compute, net-
work, and storage resources on demand from a heterogeneous
resource pool. Examples of networked utilities that can benefit
from automated policy-driven resource management include
computational grids, utility data centers, network testbeds,
and outsourced storage services [1]. Solutions for automated
resource management must balance simplicity, generality, cost,
and performance.

Application performance can vary significantly across dif-
ferent resource assignments. To construct an effective assign-
ment, the system must predict the interaction of application
characteristics (e.g., compute-to-communication ratio) with
resource attributes (e.g., CPU speed, cache, and I/O system be-
haviors). In networked environments, application deployment
can involve a multi-step plan with distributed task workflows
and staging of data between sites. Modeling the alternatives
accurately and efficiently can help the system select the right
plan.

This paper explores an approach to construct simple and
efficient predictive models that combine limited a priori struc-
ture with statistical learning. This study is part of our research
on NIMO (Nonlnvasive Modeling for Optimization), a frame-
work for model-guided utility resource planning.! NIMO is

IThis research is supported by IBM and Network Appliance. Some funding
was provided by the National Science Foundation through ANI-01-26231,
ANI-0330658, and CNS-0509408.

Shivnath Babu
Duke University, Durham NC 27708
shivnath@cs.duke.edu

Jeffrey S. Chase
Duke University, Durham NC 27708
chase @cs.duke.edu

active: it deploys and monitors applications on heterogeneous
resource assignments so that it can collect sufficient training
data to learn accurate models. NIMO is also noninvasive: it
gathers the training data from passive instrumentation streams,
with no changes to operating systems or application software.

We limit our initial focus to performance estimation for a
class of batch compute applications (see Section II-B). A batch
workflow G consists of one or more batch fasks linked in a
directed acyclic graph representing task precedence and data
flow (e.g., [2]). In this paper we focus on individual tasks, but
the approach extends naturally to task workflows with known
structure. NIMO builds a performance model that can predict
G’s completion time on a resource assignment R comprising
a set of hardware resources (e.g., compute, network, and
storage) assigned to run G. In essence, the models approximate
the peak data throughput of G on R based on the time G
“occupies” processing resources, averaged over all units of
data processed by G.

We evaluate the effectiveness and accuracy of our approach
on a set of biomedical applications that run frequently on a
shared production cluster at Duke, called the DSCR. A goal
of NIMO is to induce models that are sufficiently accurate to
guide resource planning in several scenarios:

o Task placement. Mapping individual tasks to candidate
resources involves balancing multiple factors that affect
performance on different CPU, host, network, and storage
configurations. A system could use the models to evaluate
alternatives and select the best candidates to maximize
some objective such as global value.

e On-time computing and SLAs. A utility often must meet
service-level agreements (SLAs) and performance targets
for hosted applications. In a computational setting, spe-
cific deadlines may exist for tasks that deal with real-
world events such as storm forecasting [3] and response.
The system must find resource assignments that meet the
performance constraints.

o Storage outsourcing and data staging. Storage access
delays can be a key barrier to harnessing remote comput-
ing resources [4] or outsourced storage. We show how
a system can use models to estimate the performance
impact of remote I/O and the benefits of task migration
or local staging.

The experimental results illustrate the potential of model-
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Fig. 1. Three choices for executing a compute application G in a wide-
area utility: (1) run G locally at site A; (2) run G at site B and access data
remotely from A; (3) stage the data at site C' and run G locally at site C.

guided planning as a basis for automated management in these
settings. The key contribution of this paper is to show that
statistical learning enables the system to infer reasonably accu-
rate predictive models from a modest amount of training data.
The evaluation quantifies prediction accuracy using multiple
metrics: absolute and percentage error, which are most relevant
for meeting SLASs, and ranking error, which is important for
selecting among competing candidate resource assignments.
The current NIMO prototype uses simple models based on
linear regression and with limited a priori structure. In our
experiments, the mean percentage error from the model predic-
tions is always below 11%. We also use synthetic workloads
to stress the linear regression approach and demonstrate its
limitations, measuring errors up to 30% when some resource
assignments hide the I/O latency. We suggest enhancements
to NIMO that have potential to further improve prediction
accuracy and training cost.

This paper is organized as follows. Section II defines the
problem, and gives an overview of NIMO. Section III surveys
related work, and Section IV presents the initial approach
to model learning used in the prototype. Section V presents
experimental results from the prototype on a NIMO testbed,
and Section VI concludes.

II. OVERVIEW
A. Motivating Scenario

Consider the scenario depicted in Figure 1, with three
sites A, B, and C comprising a networked utility. Suppose
a user at site A wants to run an application G on the utility.
The input data for GG is stored at A. Site B has the fastest
compute resources, but insufficient storage to store G’s input
data locally. Site C' has faster compute resources than A and
sufficient local storage for G’s data. The utility must choose
a plan to execute . Candidate plans include:

Pi: Run G locally at A
P: Run G at B, so G gets the best compute resource
available, but incurs remote I/O to A for data access

Ps: Stage G’s data to C' from A, and run G locally at C
Previous studies have shown that plan performance can vary
significantly depending on application characteristics and un-
derlying resource characteristics [4], [5], [6], [7]. For example,
plan P, can be much more efficient than plans P; and Ps if
G does a lot of computation, but relatively little 1/O.

Figure 2 gives an overview of our approach to estimate
the performance (completion time) of candidate plans. NIMO

Candidate compute,
Application network, and Input data sets
storage assignments:
r\_______ ------/-.

| — | Learned automatically
Application Resource Data | (Noninvasive

1
1| Profile Profiles | | Profiles | | instrumentation

1 I common monitoring tools)
| I N I A

‘ Performance Model ‘

Candidate Target i
plans completion
time \-
N S AN e
1 Predict th Characterize
1 beeslf plane assignments that : Use of model
1 meet the target | | for planning
|
1

Fig. 2. Overview of the model-guided planning approach.

builds profiles of resources and frequently executed applica-
tions by analyzing instrumentation data gathered from previous
runs using common and noninvasive tools (currently sar,
tepdump, and nfsdump [8]). A performance model M for an
application G predicts the completion time of a plan for G
given three inputs: (i) G’s application profile, (ii) resource
profiles of resources assigned to the plan, and (iii) data profile
of the input dataset.

Intuitively, the application profile captures how an applica-
tion uses compute, network, and storage resources. Resource
profiles specify attributes that characterize the function and
power of those resources in an application-independent way.
For example, a resource profile might represent a compute
server with a fixed number of CPUs defined by attributes such
as clock rate and cache sizes, with an attached memory of a
given size. Similarly, storage resources can be approximated
by attributes such as capacity, spindle count, seek time, and
transfer speed. These attributes determine the performance that
a given application (defined by its profile) can expect from
them. The data profile comprises the data characteristics of
G’s input dataset, e.g., the input data size.

The performance model M uses these profiles as inputs to
support the following target uses as shown in Figure 2:

« Given a set of candidate plans for G, M ranks the plans

in order of (estimated) completion time;

« Given a target completion time ¢ for G, M characterizes

plans whose completion time is < ¢.

B. Problem Setting and Assumptions

In this paper we focus on the behavior of batch compute
applications that combine processing and file I/O. The com-
pletion time of a batch task is limited only by the resources
assigned to its plan. Our model inference makes several
limiting assumptions; these are consistent with the workloads
observed in the DSCR cluster at Duke.

e Data-independent behavior. We consider applications
whose resource demands are regular across different input
datasets. Specifically, the models consider only the char-
acteristics of the input dataset that are represented in the



data profile (e.g., input size); if other data dependencies
exist, then the predictions may be inaccurate. The current
NIMO prototype does not consider data dependencies.

o Commodity architectures. We consider heterogeneity in
the compute resources across CPU speeds and memory
sizes within the same CPU architecture. A recent survey
of grid resources [9] suggests that at any given point of
time, there are only a few dominant architectures. Thus
our resource profiles capture CPU type as a separate
attribute; the analysis algorithm considers the impact of
CPU type, but does not directly track correlations across
different CPU types.

o Sequential batch applications. A survey of 280, 000 jobs
submitted in a recent month to the DSCR cluster from
a diverse set of user groups (computational biology,
physics, chemistry, biochemistry, biomedical, statistics,
etc.) show that almost 90% of the jobs are sequential
batch jobs. Our techniques are applicable to parallel
applications with a fixed degree of parallelism, but we
do not consider them in this paper. All applications that
we analyze in this paper run on a single CPU.

III. RELATED WORK

Much of the previous work on model-based provisioning
and placement focuses on online Internet services, which
are driven by the arrival patterns of requests and queuing
behavior [10], [11], [12], [13]. In contrast, we focus on
compute batch tasks that run to completion at machine speed,
so we do not need to model request arrivals. Hippodrome [14]
uses detailed performance models and an optimizing planner
to assign storage resources in a shared utility. Hippodrome
emphasizes storage performance and modeling of contention;
our approach is complementary in that it addresses the inter-
action of computation and storage access and their impact on
end-to-end application performance.

Several previous studies support the potential of statistical
techniques to capture application performance behavior accu-
rately. For example, two early surveys ([15], [16]) found that a
large class of scientific applications exhibit marked regularity
in CPU usage and I/O activity over the execution interval.
Some applications show data-dependent behavior—their re-
source usage depends on parameters or the contents of the
input data—and several groups are exploring how to map such
dependencies when they exist, e.g., [17], [18], [19]. Although
this paper does not consider data-dependent behavior, NIMO’s
data profiles can represent input data characteristics that affect
application resource demands; these complementary projects
may help to understand the most relevant characteristics and
how to capture them.

Accurate prediction of completion time is a prerequisite
for many provisioning and scheduling strategies, e.g., [5],
[7]. AppLeS [5] is a grid scheduling framework that uses
estimates of computation and file transfer times to decide
task placement. Menasce et al. [20] use queuing analysis to
predict the throughput of a stream of batch tasks competing
for homogeneous shared resources, assuming the behavior of

individual tasks is known. A number of systems approximate
NP-hard optimal scheduling assignments given estimates of
performance or utility, e.g., [21]. All these systems can benefit
from our work in predicting the completion times of individual
tasks on heterogeneous resources.

Some recent prediction work instruments the program
source or its binary (e.g., [22]), or assumes knowledge of the
program internals. For example, Rosti et al. [23] instrument
the source code of parallel applications to derive stochastic
prediction models. In contrast, we rely only on noninvasive
instrumentation, so our model predictions may be less accu-
rate. [24] provides a black-box approach to predict completion
time on heterogeneous platforms, but the approach requires a
partial execution of each candidate application on each target
system.

Remote storage access is a key barrier to harnessing remote
computing resources effectively [1], [4]. Our approach models
the impact of storage placement and access costs on end-to-
end performance, as a basis for intelligent placement of tasks
and data. Wolski et al. [6] evaluate the impact of various data-
staging strategies on wide-area task farming, and show that
staging overhead can often be overlapped with computation.
The models in this paper are conservative with respect to this
phenomenon, but could be extended to account for it.

Various mechanisms exist to realize a range of choices
for data staging and task placement in networked systems.
BAD-FS [2] assigns work to compute servers and storage
servers to maximize the benefit of local caching and buffering.
Logistical Networking [25] addresses the global scheduling
of data movement and computation. Stork [26] is a batch
scheduler that schedules data migration tasks as first-class
citizens alongside computation. Abacus [27] uses analytical
models to drive dynamic task placement for data-intensive
cluster applications. Our work gives a model-guided approach
to select among candidate task and data placements in such
systems, and to induce the models automatically.

IV. LEARNING PERFORMANCE MODELS

In general, a batch workflow G consists of one or more
tasks linked in a directed acyclic graph (DAG) representing
task precedence and data flow [2]. A plan makes a resource
assignment R to each task G; € G. Suppose that each
task G; accesses its inputs and outputs from the storage
resources specified in R, and that G; fires only when its
predecessors have produced its inputs, as is common [2]. Then
the completion time (execution time) of the workflow is the
sum of the completion times of the tasks in its critical path,
which can be found using existing techniques [28]. A plan may
also interpose additional tasks for data migration and staging
into the workflow.

This paper focuses on forecasting the completion time of
individual tasks G;, or (equivalently) graphs G consisting of
a single task. Section IV-A gives an overview of the modeling
problem and the structure of the application, resource, and
data profiles. Section IV-B explains the performance model
that combines the profiles to forecast the completion time of



a task on a candidate assignment R. Sections IV-C and IV-D
summarize how NIMO learns different profiles.

A. Profiles

Consider a task G’s execution as an interleaving of compute
phases, in which the compute resource is doing useful work,
and stall phases, in which the compute resource is stalled on
I/O. For the execution of task G with input dataset I on the
resource assignment ﬁ, we define:

e The compute occupancy of G on R, denoted 0gs 18
the average time spent computing per unit of data flow
processed by G.

e The stall occupancy of G on R, denoted oy, is the average
time for which the compute resource is idle per unit of
data flow. Stall occupancy o5 = o, + 04, Where o, and o4
capture the portion of occupancy caused by delays in the
network and storage (disk) resources respectively. Note
that the “stall occupancy” components for network and
storage do not represent the service demands or utilization
at those resources; rather, they represent the compute
stalls caused by delays at those stages, given the overall
resource assignment.

The occupancies are determined by the interaction of
the application and the resources, given the behavior of
the application on the input dataset I. R’s resource profile
characterizes the resource properties, and the data profile
represents the significant characteristics of I. G’s application
profile captures the interaction and the resulting application
behavior in terms of the properties of the resource and data
profiles. The profiles are defined as follows:

Resource Profile: A resource profile p is a vector
(p1,p2,-..,p;) where each p; measures the value of some
performance attribute of R. The performance attributes are
properties of the resources, and are quantifiable independently
of any specific task. For example, for a compute resource, the
attributes may include processor speed, cache size, memory
size, memory latency, and memory bandwidth. In the single-
task cases considered in this paper, the resource profile charac-
terizes a resource assignment R = (C, N, S) representing the
compute (C), network (/V), and storage (.5) resources assigned
to run a task.

Data Profile: The data profile X of an input dataset [ captures
any characteristics of I that may correlate with resource
demands, such as size, format type metadata, or histograms
capturing data distribution. In this paper, we consider a single
attribute for X, namely, the total size of the input dataset.
Application Profile: G’s application profile includes four
predictor functions fo(p,\), fn(P, N), fa(p, A), and fp (g, A).
fas fn, and fg are occupancy predictor functions that predict
G’s occupancies 0q, o, and oq respectively on_a resource
ass1gnment R and input dataset 7, as a function of R’s resource
profile ¢ and I’s data profile X. The data flow predictor
function fp (7, ) estimates D, the total data flow processed
by G (i.e., the total number of units of data read and written
by ) for a given R and I.

B. Performance Model

Given task G’s application profile (fq, fn, fd, fD), the re-
source profile p' of a candidate resource assignment R, and
input dataset I’s data profile X, NIMO predicts G’s completion
time on R by the performance model M (G, I, ﬁ)

Completion Time = [p (7. X)x (fa(B, N)+Fu (5 X+ fa(, X))
ey
In this paper, we make a crucial choice to capture significant
performance effects implicitly in the predictor functions, rather
than explicitly in the structure of an a priori analytical model.
The complexity arising from factors such as CPU caching, file
caching, I/O patterns, latency hiding, and queuing behavior at
storage servers is captured implicitly in the training data for
the predictor functions. As long as the effects of these factors
show in the training data, the statistical learning techniques
can capture them (Section V-B). However, to build an accurate
model, it is important to choose training sample runs (or
experiments) with good coverage over the entire operating
range. We discuss this problem briefly in Section V-B.4.

We also considered the alternative of using a closed-
loop queuing network model parameterized by analysis of
the training data. An explicit model would capture factors
such as concurrency, latency hiding behavior, and queuing
effects in the structure of the analytical model, so it would
require less training data to learn an accurate task model
(Section IV-A). However, this approach is less general, and it
may be difficult to obtain parameters such as service demands
(utilization) from noninvasive instrumentation data, particu-
larly for resources such as storage servers. In addition, this
approach requires NIMO to infer the degree of concurrency
in the closed-loop system, e.g., resulting from the depth of
operating system prefetching, or the threading structure of the
application. Section V-B.4 revisits the tradeoff between the
two performance modeling approaches.

C. Learning Application Profiles

To infer G’s application profile, NIMO must learn G’s
occupancy predictor functions (fa(g,A), fn(p,A), fa(p) )>
and the data flow predictor function fp(g, ). NIMO uses
Algorithm 1 to derive the occupancies and total data flow from
measurements of G running on an assignment of compute,
network, and storage resources. From each run of GG, NIMO
obtains a training sample of the form (g, X, Oa, On, 0d, D),
where the attributes p1, p2,...,p; and Ay, Ag,..., A\, corre-
sponding to the resource profile o and the data profile X
respectively are the independent variables, and (0, 05, 04, D)
are the dependent variables. If NIMO has a reasonably large
and representative set of such samples, then the problem
of learning accurate predictor functions (fa(p) X), fnl(7X),
fa(7,X), fp(7, X)) reduces to a statistical learning problem of
fitting accurate regression functions to predict each of o4, 0,,
o4, and D using attributes p1, p2,..., pj, A1, A2, .. o5 A

Algorithm 2 depicts the learning process for fu; fn, fa,
and fp can be learned similarly. Section V uses an example
to illustrate how the predictor functions are constructed. Note



Algorithm 1: Computing G’s occupancies and total data
flow to process dataset I on assignment R = (C, N, .S)

1) Run G on ﬁ, and measure the compute resource C’s
average utilization U, G’s completion time ¢, and the
total data flow D (using network I/O traces)

2) Solve for o, and 0, from U = —22— L L

0q+0s”

0q+o0s’ t
3) Use network I/O traces to derive the average time

spent per I/O in the network resource /N and in the
storage resource S

4) Split oy = 0,, + 04 into o, and o4 in proportion to the
ratio of network and storage components of the average
I/O time from Step 3, to obtain (04, 0n, 04, D);

Algorithm 2: Learning G’s compute occupancy predictor
function f, (7, A)

1) Conduct m runs of G where run ¢ is conducted on
(R;, I;) with resource profile g; = (p1,,...,p;,) and
data profile X; = (A1,, ..., Ak, );

2) Use Algorithm 1 to generate m training data points
where the ith point is (p1,,...,05is A5« -s Mk » Oay )5

3) Normalize the training points using a reference
configuration <ﬁref7 I ;) with resource profile pys
and data profile Xm ¢. Let G’s compute occupancy on
(Rref,lreﬁ be 0q4,,,, so the ith normalized training

P1, Pi; A1, >\k Oa:

data point is .. . i)
p <P1,€f’ P Pires M, Ak, f’OaTe ’

4) Use regression on the tralnmg data to learn a functlon
F(7,X) that predicts the value of —22— 52+ from the

,pj and Al,...,)\k. Set

nonnahzed values of Py
fa(p7 ) - Oamf X F(pa A)’

that all samples are normalized with respect to a reference
configuration (ﬁrefa I,cs) since the dependent and indepen-
dent variables have different units and ranges.

Currently, our NIMO prototype uses multi-variate linear
regression to learn the predictor functions. Linear regression
gave good prediction accuracy for almost all the applications
and resource assignments considered in the paper. Section V-
B.4 discusses more sophisticated techniques for capturing non-
linearity in performance effects. Another current limitation of
our prototype is that it does not consider data profiles while
learning the predictor functions, so it cannot, e.g., predict
completion time accurately for applications whose resource
demands per unit of data depend on characteristics of the input
dataset.

D. Learning Resource Profiles

NIMO automatically obtains resource profiles by running
standard benchmark suites that are designed to expose the
differences that are most significant for the performance of real
applications. Currently NIMO uses whetstone [29] to calibrate
CPU speeds, Imbench [30] to calibrate memory latency and

Application
fMRI [33]

Description

Statistical parametric mapping to normalize functional
MRI images of human brains

Cardiac electrophysiology simulation (MPI)

CardioWave [34]

BLAST [35] Search genomic dataset for matches on proteins and
nucleotides

NAMD [36] Simulation of large biomolecular systems (MPI)

GAMUT [37] An application emulation tool for generating work-

mixes; generate 6 synthetic tasks with equivalent com-
pute costs but different access patterns: rand./seq.
read/write, and rand./seq. read and write in 1:1 ratio

TABLE I
APPLICATIONS USED IN NIMO EXPERIMENTS.

bandwidth, and netperf to calibrate the network latency and
bandwidth between the compute servers and storage resources.
Our approach is independent of the specific benchmarks as
long as they capture the underlying resource characteristics;
we found that these benchmarks are sufficient for making
accurate predictions in our environment. Other researchers
have confirmed that simple benchmarks can be used in pro-
filing HPC platforms [22], studied benchmark selection for
comprehensive coverage [31], and devised strategies for robust
resource profiling in the presence of competition for shared
resources [32].

V. EXPERIMENTAL EVALUATION

We experimented with a range of applications and resource
assignments in a NIMO testbed. We used a standard cross-
validation methodology to evaluate the effectiveness of model
induction with various training sets, and the accuracy of the
resulting performance predictions. Section V-A uses multiple
accuracy metrics to profile the prediction accuracy, and Sec-
tion V-B explores the sensitivity of the results to training set
size and selection. Section V-C illustrates the potential role of
the induced performance models to guide resource planning in
several scenarios for a network utility: task placement, on-time
task completion, and storage outsourcing or data staging.
Workloads. Table I lists the applications used in the exper-
iments. The fMRI, CardioWave, BLAST, and NAMD applica-
tions are used in biomedical research at Duke and elsewhere.
We consider one representative input dataset for each appli-
cation. GAMUT is a tool for emulating cluster application
workloads with controlled degrees of CPU, I/O (including
I/O patterns), and memory usage. GAMUT is useful for
generating synthetic workloads to explore the space of possible
application behaviors comprehensively. We focus on the fMRI
workloads for the in-depth application studies because their
performance is the most sensitive to the combination of CPU
and I/O resources.

Candidate resources. NIMO’s testbed contains five compute
nodes—451 MHz, 797 MHz, 930 MHz, 996 MHz, 1396
MHz—with Intel PIII architecture, CPU cache size ranging
from 256 KB to 512 KB, memory size ranging from 512 MB
to 2 GB, and Linux 2.4.25 kernel. We used NISTnet [38]
to impose varying network round-trip delays: 0,2,...,16,18
ms. For the experiments reported in this paper we held the
storage system, CPU architecture (Pentium III), and network



bandwidth constant. The five different CPU configurations
and ten network latencies yield a total of 50 candidate
resource assignments for a task in the testbed.

Model Construction. The accuracy experiments use a 50-way
cross-validation methodology as follows. For each application
in Table I:

1) We fix one of the 50 candidate assignments as the
reference assignment éref.

2) NIMO learns the predictor functions for the application
using a training set of 14 (28%) of the 50 candidate
assignments containing at most one non-reference re-
source.

3) The resource assignments not in the training set consti-
tute the fest set on which we compare model-predicted
completion times with measured completion times to
evaluate prediction accuracy.

4) For cross-validation and sensitivity analysis, we repeat
Steps 1-2 50 times with different training and test sets.
A different ﬁref is selected for each trial.

As an illustration, Figure 3 shows two projections of a subset
of training data collected for fMRI. These projections show that
the dominant effect on compute occupancy in this case comes
from the speed of the compute resource (as characterized
by whetstone performance, Section IV-D). Similarly, in these
assignments, changes in network latency affect only network
occupancy, but have little effect on compute occupancy. Based
on this training data, NIMO learns the following occupancy
predictor functions for fMRI, with occupancy measured in
microseconds per byte.

4.40

Pcpu speed

fo= —0.2, f, = 4.46 pper 1ot + 0.7, fa = 0.32
Here, fp = 0.1064 x 109 bytes. pepu speca and pret 1t are
attributes of the resource profile of the candidate assignment
normalized to the reference assignment. Depending on the het-
erogeneity in the hardware resources, the predictor functions
may depend on more attributes, e.g., architecture type, mem-
ory size, number of disk spindles, and network bandwidth.
Correlation analysis can identify the most relevant attributes.
When we tested the above model on the test assignments, the
predicted completion times were within 5% of the measured
completion times.

A. Model Accuracy

Table II summarizes the accuracy of the completion times
predicted by the induced performance models. It reports the
following metrics:

o Absolute Error (AE) and Percentage Absolute Error
(PE): AE measures the absolute difference between pre-
dicted completion time and measured completion time.
PE measures the corresponding percentage error. AE
and PE are particularly relevant to the use of models
to identify candidate resource assignments to meet a
completion time target.
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Fig. 3. Impact of CPU speed and network latency on fMRI’s occupancies

« Top-k Ranking Distance (RD(k)): Consider n resource
assignments that are ranked in the order El, .. .,ﬁn
based on increasing completion time for application G.
Let p; be the model-predicted rank of ﬁl The normalized
top-k ranking distance RD(k) for model predictions is

i=k | . .
% When the model is used to select resource
i=1"""

assignments in a utility setting, a low value of RD(k)
indicates good performance. 0 < RD(k) < 1, with
RD(k) = 0 indicating accurate ranking of the k best
assignments.

e Order Preserving Degree (OPD) [39]: A model pre-
serves the relative order of resource assignments ¢ and
j iff t,,(<,=,>)tp, holds when t,,(<,=,>)t,, holds,
where ¢, and ¢, respectively represent model-predicted
and measured completion times. Given n candidate as-
signments, OPD = ‘OnLZP‘ where OPP is the set of order-
preserving pairs. 0 < OPD < 1, with OPD = 1 indicating
accurate ranking.

For each metric, Table II reports the mean, standard deviation,
worst-case value (100th percentile), and 90th percentile value
from a 50-way cross-validation. Note that mean percentage
error from model predictions is under 11%, and ranking-
related errors are low (high OPD and low RD). The worst
reported PE occurs for a synthetic application doing sequential
file reads (GAMUT seq. read in the table). Even in this case,
the induced models were accurate to within 23% for 90% of



AE (mins) PE OPD RD(1)
Application p | o ] Wst ] 90pc uw [ o [ Wst ] 90pc pw [ o [ Wst ] 90pc p [ o [ Wst ] 90pc
fMRI 9 6 | 42 1.7 3 2 15 6 98] .00 | .98 98 021 .02 .05 .05
CardioWave 9 7029 1.2 1117 27 22 871 .02 .83 .85 071 .03 | .09 .09
BLAST 1 .08 | .36 1.1 1 T | 4 2 1 0 1 1 0 0 0 0
NAMD .6 4 1.5 1 8 6 19 13 921 .02 .89 .90 151 .09 21 21
GAMUT (seq. read) v 1.2] 46 32 6 8 30 23 921 .02 .89 .90 A5] .09 .21 21
GAMUT (rand. read) 1 09| 4 2 3 2 13 6 98| .01 .97 97 021 .02 .04 .04
GAMUT (seq. write) 1 .1 .5 2 2 2 7 4 98| .01] .97 97 .03] .03 | .09 .09
GAMUT (rand. write) 413 1.6 9 5 3 15 10 951 .02 93 .93 .01] .03 .09 .04
GAMUT (rand. 1/w) 1 071 .35 .19 1 1 6 2.3 991 .01 .99 .99 .01] .02 .04 .04
GAMUT (seq. r/w) 3 3 1.6 .8 5 5 23 12 90| .02 .88 .88 091 .02 .16 12
TABLE I

SUMMARY OF ACCURACY METRICS FOR 4 REAL AND 6 SYNTHETIC APPLICATIONS USING 50-WAY CROSS VALIDATION. 4 = MEAN, 0 = STANDARD

DEVIATION, Wst = WORST CASE ERROR, 90 pc = 90TH PERCENTILE

the trials. Even so, this sequential I/O workload illustrates the
limits of the linearity restriction in the current NIMO prototype
(see Section IV-C). Section V-B.4 explores this issue in more
detail below.

B. Sensitivity Analysis

1) Choice of reference assignment: As noted, the induced
predictor functions normalize resource occupancy as relative
to occupancy observed on a designated reference assignment
ﬁref (see Algorithm 2). The 50-way cross-validation experi-
ments in Table II select a different reference assignment ﬁref
for each trial. The low variances in Table II suggest that model
induction is robust to the choice of reference assignment.

Training AE AE PE PE OPD RD(1)
Set Size (mins) | (mins) | (mean) | (SD) (mean) | (SD)
(mean) | (SD)

4 35 2.7 13.12 8.22 .96 .03

6 1.8 1.3 6.8 4.1 97 .03

8 1 .8 4 2.5 98 .02

10 9 .65 3 2 98 .02

TABLE III

VARYING TRAINING SET SIZE FOR fMRI.

2) Size of training set: Table III shows the impact of
different training set sizes on the accuracy metrics for fMRI
across 50 training and test sets. Larger training sets yield more
accurate models, but even training sets as small as 6 have good
accuracy.

3) Queuing delays and concurrency: Although we do not
investigate parallel applications in this paper, our approach
appears to be robust across degrees of concurrency in storage
access. The key assumption is that the internal degree of
concurrency is fixed in the application and the OS it runs
on, i.e., the CPU initiates a bounded number of pending
I/Os. Given this assumption, the parameterization captures the
impact of queuing (e.g., in the storage system) implicitly.

We create a synthetic task (GAMUT rand. write in Table IT)
that saturates the storage resource to introduce a bottleneck.
Figure 4 shows the impact of queuing delays on the occu-
pancies. As seen in the figure, faster network or faster CPU
increases the occupancy at the storage resource and vice versa.
Such an effect is also created if concurrency at the compute

resource introduces an I/O rate that cannot be handled by the
storage resource, e.g., in the case of a parallel application with
high degree of parallelism.

NIMO learns the following predictor functions for this
synthetic task using the approach outlined in Section IV-C. The
mean percentage error is within 10% as shown in Table II. This
suggests that our approach is reasonably robust with respect
to queuing delays as well.

fa =0.019 + 059/pcpu speed T 0.007 * Pnet lat
frno=—0.184 — 0.16/ pepu speed + 0.42 * ppet tas
fd =1.04 + 034/pcpu speed — 0.19 * Pnet lat

4) Latency hiding and operating range: Figure 5 shows the
impact of latency hiding in the case of a synthetic task doing
pure sequential reads (GAMUT seq. read in Table II). The
worst case percentage error for this task is 30%. We found
that this error occurs because prefetching behavior of the file
system hides the network latency up to a certain point, causing
a non-linear impact on the network occupancy.

The predictor function for predicting network occupancy in
this case is a piece-wise linear function, and we are currently
exploring two fundamental alternatives for capturing it more
accurately. One approach is to replace our linearity assumption
with a more sophisticated learning algorithm such as regres-
sion splines [40]. Another approach is to incorporate an a
priori model of the closed-loop queuing structure to capture the
effect of concurrency, queuing, and latency hiding explicitly;
see Section I'V-B. The first approach is more general, but the
second requires fewer samples to parameterize the models,
and may yield accurate predictions even outside of the range
sampled in the training data. Figure 5 illustrates that the
learned predictor functions may be inaccurate outside of the
sampled range; in addition to considering structural models,
we are also exploring active sampling approaches to training
set selection to maximize coverage of the operating range.

C. Model-Guided Planning

The primary goal of our work with NIMO is to guide auto-
nomic resource management from analysis of instrumentation
data gathered as the system operates. This section illustrates
how an autonomic utility can use the induced models to
select from candidate resource assignments and strategies for
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Fig. 4. Impact of CPU speed and network latency on occupancies of GAMUT
doing random file writes. Note that the storage resource is saturated and hence
the storage occupancy changes with CPU speed as well as network latency.
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Fig. 5. Impact of network latency on occupancies of GAMUT doing
sequential file reads. Prefetching hides I/O latency up to a point, making
a single linear function insufficient to predict network occupancy throughout
the operating range.

task placement and data staging. We defer a comprehensive
analysis to future work.

1) Selecting task placement: A utility resource manager can
evaluate the models directly to compare the predicted perfor-
mance of a set of competing candidate resource assignments.
For example, the utility can predict which combination of CPU
and I/0 resources will yield the shortest completion time for
a batch task.

Table V compares the measured performance of fMRI runs
on four candidate assignments A;—A4 shown in Table IV. It
shows the predicted and measured completion times for the
candidate (A;) preferred by an induced model, and compares
them to the candidates chosen by two simple alternative
strategies: (i) select the assignment with the fastest CPU
clock; and (ii) select the assignment with the lowest latency
to network storage. Since the delivered performance depends
on the combination of CPU and I/O resources, the naive
approaches cannot identify the best candidate. The model
captures the relative importance of the different factors alone
and in combination for each application, so it can guide the
choice of the best candidate.

Candidate Assgs. | CPU speed | Network latency (ms)
Aq 996 MHz
Ao 797 MHz 4
As 1396 MHz 10
Ag 451 MHz 2
TABLE IV

CANDIDATE ASSIGNMENTS FOR fMRI

Performance
Completion time = 16.67 min
Predicted time = 17.46 min
23% slower than A;
50% slower than A1

TABLE V
COMPARING ASSIGNMENT CHOICES

Choice of Assg.
Actual best = A4
Model-predicted = A;
Fastest CPU = Ag
Fastest network = A4

2) On-time computing: A resource manager can also use
the models to search for a candidate assignment that meets a
specified completion time target ¢ for a task or a sequence of
tasks, such as the critical path of a complex workflow graph.
For a chain of n tasks, eligible candidates must satisfy the
inequality:

n

ZDi(Oai + op; + Odi) <t

i=1
Identifying eligible candidates is a heuristic search problem
in the general case, but it is often possible to solve directly
for attribute values that yield target occupancies for each
resource, i.e., when the occupancy is driven by continuously
valued attributes such as CPU clock speed. Figure 6 plots
occupancies for candidate assignments for an fMRI instance
with a completion time target of ¢ = 20 minutes. The figure
shows the subset of candidates that meet the target completion
time, the set that does not meet the target, and also the model-
predicted “boundary” between these two. For each occupancy
value of o, and o,,, the resource manager can obtain the profile
of the corresponding resources using the predictor functions
fo and f, (Section IV-C).

3) Storage outsourcing and data staging: As described in
Section II, a networked utility with multiple compute and
storage sites must consider tradeoffs between availability of
compute resources and access costs to dataset storage, which
may be remote. To evaluate the potential of model-guided
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Fig. 6. Model-predicted boundary separating assignments that meet and
those that do not meet a target runtime for fMRI. Higher values of o, and oy,
indicate slower CPU and farther storage respectively.

planning in this setting, we applied our approach to data pub-
lished in a recent empirical study of storage outsourcing [1].
The study investigates the viability of storage outsourcing
by measuring the impact of remote data placement, caching,
and local data staging under various workloads with varying
network latencies to the storage site. We induce performance
models for two synthetic benchmarks—PostMark and SPEC-
SDET—by taking data published for three remote storage
configurations as training data, and then use the models to
predict the results for the other configurations. The worst
case percentage error (PE) was 6% and 10% for PostMark
and SPEC-SDET respectively. Figure 7 shows the results for
SPEC-SDET. We conclude that our approach has excellent
potential to capture the phenomena explored in this compre-
hensive empirical study.
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Fig. 7. Accurate prediction of results from an empirical study of storage

outsourcing. We parameterize the model using three configurations (single
bars), and predict the throughput for the remaining ones (double bars). The
maximum error in prediction is 10%.

A utility may use the models to evaluate remote storage and
data staging alternatives in conjunction with task placement.
Data staging options—in which the candidate plan copies an
input or output data set between sites before or after task
execution—are modeled as one or more additional stages
inserted into a task graph. The predicted completion time is
the sum of the predicted times for the data staging steps and

task execution.

Table VI shows sample candidate assignments for fMRI
involving both remote I/O and local I/O with data staging
for the input dataset. The table shows that neither data staging
nor remote I/O is always preferred. The models identify the
best alternative and predict the overall completion time fairly
accurately even when data staging is involved.

Candidate | CPU Network | Data stag- | Actual Model
Assg. speed latency ing done? | time Pre-
(MHz) | (ms) (mins) dicted
(mins)
1.1 451 14 Yes 54.47 53.48
1.2 451 14 No 35.16 37.65
2.1 996 14 Yes 23.43 22.78
22 996 14 No 28.25 26.71
3.1 996 2 Yes 24.63 24.44
32 996 2 No 14.58 15.40
4.1 451 16 Yes 28.21 25.51
4.2 451 16 No 37.43 39.81
TABLE VI

CANDIDATE ASSIGNMENTS FOR fMRI WITH AND WITHOUT INPUT DATA
STAGING; THE PREFERRED CHOICE OF EACH PAIR IS SHOWN IN BOLD.

VI. CONCLUSIONS AND FUTURE WORK

This paper outlines our approach to active learning of simple
performance models for batch tasks, using instrumentation
data gathered at the resource level, without invasive changes
to system or application software. The mean percentage error
from model predictions is under 11% for a set of batch tasks
captured from a production cluster.

The ultimate goal of the NIMO project is to optimize re-
source assignments for complex workflows across a networked
utility. Performance models are useful to guide assignments
of shared resources to competing workloads. For example,
a utility resource manager could use the models to select
from among heterogeneous hardware alternatives, or to size
resource reservations for virtualized resources (e.g., virtual
machines). This paper provides several examples illustrating
the promise of simple application models for resource planning
in a networked utility.

However, further steps are needed to determine if this
approach is practical in real deployments. One limitation of our
work to date is that it does not capture the impact of different
input data sets on application behavior; many applications
show regular behavior across different input data sets, but
not all. Another ongoing focus is active sampling strategies
to select training sets automatically, to maximize coverage of
the operating range of resources and capture complexity in
the training data. On an alternate path, we are investigating
learning of queuing models that capture concurrency-related
behavior explicitly in the model structure.
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