
CS691D: Hot-OSComputer Science Lecture 2, page 1

Introduction to Virtualization

 Prashant Shenoy

CS691D: Hot-OSComputer Science Lecture 2, page 2

Virtualization

• Virtualization: extend or replace an existing interface to

mimic the behavior of another system.

– Introduced in 1970s: run legacy software on newer mainframe

hardware

• Handle platform diversity by running apps in VMs

– Portability and flexibility

CS691D: Hot-OSComputer Science Lecture 2, page 3

Types of Interfaces

• Different types of interfaces

– Assembly instructions

– System calls

– APIs

• Depending on what is replaced /mimiced, we obtain
different forms of virtualization

CS691D: Hot-OSComputer Science Lecture 2, page 4

Types of Virtualization

• Emulation

– VM emulates/simulates complete hardware

– Unmodified guest OS for a different PC can be run

• Bochs, VirtualPC for Mac, QEMU

• Full/native Virtualization

– VM simulates “enough” hardware to allow an unmodified

guest OS to be run in isolation

• Same hardware CPU

– IBM VM family, VMWare Workstation, Parallels,…

CS691D: Hot-OSComputer Science Lecture 2, page 5

Types of virtualization

• Para-virtualization

– VM does not simulate hardware

– Use special API that a modified guest OS must use

– Hypercalls trapped by the Hypervisor and serviced

– Xen, VMWare ESX Server

• OS-level virtualization

– OS allows multiple secure virtual servers to be run

– Guest OS is the same as the host OS, but appears isolated

• apps see an isolated OS

– Solaris Containers, BSD Jails, Linux Vserver

• Application level virtualization

– Application is gives its own copy of components that are not shared

• (E.g., own registry files, global objects) - VE prevents conflicts

– JVM

CS691D: Hot-OSComputer Science Lecture 2, page 6

Examples

• Application-level virtualization: “process virtual

machine”

• VMM /hypervisor

CS691D: Hot-OSComputer Science Lecture 2, page 7

The Architecture of Virtual

Machines

 J Smith and R. Nair

 IEEE Computer, May 2005

Slides courtesy of Bhuvan Urgaonkar

CS691D: Hot-OSComputer Science Lecture 2, page 8

Goal of Paper

• Provide a taxonomy of virtual machines

– Different goals

– Different implementations

CS691D: Hot-OSComputer Science Lecture 2, page 9

Early Computers

• Hardware designed

– Software written for hardware

• Each system crafted with own instruction set

– Software had to made specifically for each instruction set

• Eventually instruction sets became more standardized

– However, software still requires a certain instruction set architecture and

operating system that meets strict standards.

CS691D: Hot-OSComputer Science Lecture 2, page 10

Virtual Machines

• Eliminate real machine constraint

– Increases portability and flexibility

• Virtual machine adds software to a physical machine to give it the
appearance of a different platform or multiple platforms.

• Benefits

– Cross platform compatibility

– Increase Security

– Enhance Performance

– Simplify software migration

CS691D: Hot-OSComputer Science Lecture 2, page 11

Initial Hardware Model

• All applications access hardware resources (i.e. memory, i/o)
through system calls to operating system (privalaged
instructions)

• Advantages
– Design is decoupled (i.e. OS people can develop OS separate of

Hardware people developing hardware)

– Hardware and software can be upgraded without notifying the
Application programs

• Disadvantage
– Application compiled on one ISA will not run on another ISA..

• Applications compiled for Mac use different operating
system calls then application designed for windows.

– ISA’s must support old software

• Can often be inhibiting in terms of performance

– Since software is developed separately from hardware..
Software is not necessarily optimized for hardware.

CS691D: Hot-OSComputer Science Lecture 2, page 12

Virtual Machine Basics

• Virtual software placed between
underlying machine and conventional
software

– Conventional software sees different
ISA from the one supported by the
hardware

• Virtualization process involves:

– Mapping of virtual resources (registers
and memory) to real hardware resources

– Using real machine instructions to carry
out the actions specified by the virtual
machine instructions

CS691D: Hot-OSComputer Science Lecture 2, page 13

System/Process Virtual Machines

• Can view virtual machine as:

– System virtual machine (i.e. think cygwin)

• Full execution environment that can support multiple
processes

• Support I/O devices

• Support GUI

– Process virtual machine

• Virtual machines can be instantiated for a single program
(i.e. think Java)

• Virtual machine terminates when process terminates.

CS691D: Hot-OSComputer Science Lecture 2, page 14

Standard Interfaces

• When implementing virtual machines there are two
standard interfaces

– Deal with Process and System Level virtual machines

• ISA -> has both user and system instructions

– User instructions available to both the application programs and to
the operating system

• Application Binary Interface (ABI)

– Composed of two components

» First all user instructions

» System call interface -> allows to work with OS privalaged
instructions

CS691D: Hot-OSComputer Science Lecture 2, page 15

Process Level Virtual Machines

• Provide user with application level virtual ABI environment
– Examples

• Multiprogramming
– Provide end users with illusion of having a complete machine to itself

» Each process given own address space and access to file structure

• Emulation and Binary Translators
– Use interpretation to allow a program to be emulated on an ISA that is different then the ISA it

was compiled on. (translate instruction when called into foreign ISA)

» Can also use translation to put foreign code in to the current machines ISA.

• High Level VMS
– When process VM at the same time you design the high level language.

» First done in Pascal.. Take high level code and translates it into intermediary language.
Intermediary language is then translated to the specific ISA.

CS691D: Hot-OSComputer Science Lecture 2, page 16

System Level Virtual Machines

• Provide complete environment in which many processes, possibly
belonging to multiple users can exist.

– Virtual machine is the interface to the ISA

• Divide a single set of hardware among multiple guest Operating
Systems.

– Reason -> different people want different operating systems.

– Provides security

– Can configure hardware by monitoring performance

• Statistics allow it to configure hardware

CS691D: Hot-OSComputer Science Lecture 2, page 17

Virtualization

• The computational function carried out by a computer system is
specified in terms of:
– architected state (registers, memory)

– instructions

• cause changes in the architected state.

• Today often more implementation state then architecture state

• How do you virtualize a foreign ISA
– E.x. A foreign architecture maybe have 32 registers but your architecture

only has 8 registers.

– This means that a virtual machine may not map to an ISA efficiently.

CS691D: Hot-OSComputer Science Lecture 2, page 18

Operating System Support
for Virtual Machines

• Samuel T. King, George W. Dunlap and Peter M. Chen

• Proceedings of the 2003 USENIX Technical Conference

•Slides: courtesy of Bhuvan Urgaonkar

CS691D: Hot-OSComputer Science Lecture 2, page 19

Outline

• Introduction

• Review of Virtual Machines

• UMLinux – an evaluated Type II VMMs

• Host OS Support for Type II VMMs

• Performance Results

• Conclusions

CS691D: Hot-OSComputer Science Lecture 2, page 20

Introduction

• About Virtual Machine Monitor (VMM)
– A layer of software emulating hardware of a complete computer

system.

– Provide an abstraction – virtual machine (VM).

– Could provide a VM identical to underlying hardware platform
running VMM or totally different hardware platform.

• Uses of VMMs
– To create illusion of multiple machines on a single physical machines.

– To provide software environment for OS debugging.

– To provide means of isolation that untrusted applications run
separately.

CS691D: Hot-OSComputer Science Lecture 2, page 21

Introduction

• Two types of VMMs
– Type I

– Type II

CS691D: Hot-OSComputer Science Lecture 2, page 22

Virtual Machines

• The classification of VMMs can be based on whether the VM
created by a VMM emulates the same underlying hardware.
– VMs emulating the underlying hardware (homogeneous)

• Some performance problems due to enumeration overheads,
additional complexity in term of frequent task switches and
memory mapping.

– VMs emulating different hardware (heterogeneous)

• Various degree of compatibility:
– Denali supports only some instructions.

– Microkernel provides high-level services that are not provided by
hardware.

– Java VM is completely hardware independent.

CS691D: Hot-OSComputer Science Lecture 2, page 23

Virtual Machines

• Another classification based on Type I/II VMMs

• This paper focuses on homogeneous Type II VMMs:
– Pros:

• Run as a process that system developers/administrators can
have an easier control on it.

• As a debugging platform

– Cons:

• Undesirable performance due to lack of sufficiently powerful
interfaces provided by underlying operating systems.

• That’s work to be presented in this paper.

CS691D: Hot-OSComputer Science Lecture 2, page 24

UMLinux

• What is UMLinux?
– UMLinux is a Type II VMM , a case Type II VMM studied in this

paper

– It runs upon Linux and the guest operating systems and guest
applications run as a single process.

– Note: The interfaces provided by UMLinux is similar but not
identical to underlying hardware, so modifications on both guest
OS and VMM are needed.

– It makes use of functionality supplied by underlying OS, e.g.

• process as CPU,

• Host memory mapping and protection as virtual MMU

• Memory files as file systems etc.

• files and devices as virtual devices,

• TUN/TAP devices as virtual network,

• host signal as virtual interrupts,

CS691D: Hot-OSComputer Science Lecture 2, page 25

UMLinux

• UMLinux system structure
– A VMM process and a guest-machine process

– VMM process

• Redirects operating signal and system calls

• Restricts the set of system calls allowed by guest OS

• VMM uses “ptrace” to mediate access between guest
machine process and host OS.

* ptrace is a system call to observe and control another process, and examine

and change its core image and registers. It is primarily used to implement

breakpoint debugging and system call tracing.

CS691D: Hot-OSComputer Science Lecture 2, page 26

UMLinux

• UMLinux operations
– Example:

System call intercepted by VMM

process via ptrace

guest SIGUSR1 handler calls mmap

to access guest kernel data;

intercepted by VMM process

CS691D: Hot-OSComputer Science Lecture 2, page 27

Host OS support for Type II VMMs

• Three bottlenecks in running a Type II VMM
– Inordinate number of context switches between processes.

– A large number of memory protection operations.

– A large number of memory mapping operations.

– This paper proposed possible modifications to VMM and in general,
the modifications involves only a few number of lines of code.

