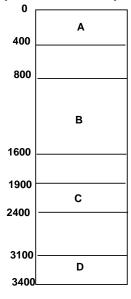
## **CMPSCI 377: Operating Systems**

Homework 3: Deadlocks and Memory Management Due: November 7, 2000, in class


- 1. (10 pts) Deadlock. Short answer questions:
  - (a) A system has six tape drives (a, b, c, d, e, f), with *n* processes competing for them. Each process may need two of the drives. For what values of *n* is the system deadlock free?
  - (b) Can a system be in a state that is neither deadlocked nor safe? If yes, give an example system.
- 2. (20 pts) **Deadlock** Problem 8.9 from the textbook.
- 3. (10 pts) **Deadlock.** Consider the following system snapshot using the data structures in the Banker's algorithm, with resources A, B, C, and D, and processes P<sub>0</sub> to P<sub>4</sub>.

|                | Allocation |   |   |   | Max |   |   |   | Available |   |   |   | Need |   |   |   |
|----------------|------------|---|---|---|-----|---|---|---|-----------|---|---|---|------|---|---|---|
|                | Α          | В | С | D | Α   | В | С | D | А         | В | С | D | Α    | В | С | D |
|                |            |   |   |   |     |   |   |   | 3         | 2 | 1 | 0 |      |   |   |   |
| P <sub>0</sub> | 3          | 0 | 0 | 2 | 6   | 0 | 1 | 2 |           |   |   |   |      |   |   |   |
| P <sub>1</sub> | 1          | 0 | 0 | 0 | 1   | 7 | 5 | 0 |           |   |   |   |      |   |   |   |
| P <sub>2</sub> | 1          | 3 | 5 | 4 | 2   | 3 | 5 | 6 |           |   |   |   |      |   |   |   |
| P <sub>3</sub> | 0          | 6 | 3 | 2 | 1   | 6 | 5 | 2 |           |   |   |   |      |   |   |   |
| P <sub>4</sub> | 0          | 0 | 1 | 4 | 1   | 6 | 5 | 6 |           |   |   |   |      |   |   |   |

Using Banker's algorithm answer the following questions.

- (a) How many resources of type A, B, C, and D are there?
- (b) What is the content of the *Need* matrix?
- (c) Is the system in a safe state? Why?
- (d) If a request from process  $P_4$  arrives for additional resources of (1,2,0,0), can the Banker's algorithm grant the request immediately? Show the new system state, and other criteria.

4. (10 pts) Consider a segmented memory system with memory allocated as shown below.



Suppose the following actions occur:

- Process E starts and requests 300 memory units.
- Process A requests 400 more memory units.
- Process B exits.
- Process F starts and requests 800 memory units.
- Process C exits.
- Process G starts and requests 900 memory units.
- (a) Describe the contents of memory after each action using the first-fit algorithm.
- (b) Describe the contents of memory after each action using the best-fit algorithm.
- (c) How would worst fit allocate memory?
- (d) For this example, which algorithm is best?