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Abstract 

Lightweight Remote Procedure Call (LRPC) is a com- 
munication facility designed and optimized for commu- 
nication between protection domains on the [same ma- 
chine. 

In contemporary small-kernel operating systems, ex- 
isting RPC systems incur an unnecessarily high cost 
when used for the type of communication that pre- 
dominates - between protection domains on the same 
machine. This cost leads system designers to coalesce 
weakly-related subsystems into the same protection do- 
main, trading safety for performance. By reducing the 
overhead of same-machine communication, LRPC en- 
courages both safety and performance. 

LRPC combines the control transfer and communi- 
cation model of capability systems with the program- 
ming semantics and large-grained protection model of 
RPC. LRPC achieves a factor of three performance 
improvement over more traditional approaches based 
on independent threads exchanging messages, reducing 
the cost of same-machine communication to nearly the 
lower bound imposed by conventional hardware. 

LRPC has been integrated into the Taos operating 
system of the DEC SRC Firefly multiprocessor work- 
station. 

1 Introduction 

This paper describes Lightweight Remote Procedure 
Call (LRPC), a communication facility designed and 
optimized for communication between protection do- 
mains on the same machine. 

LRPC combines the control transfer and communi- 
cation model of capability systems with the program- 
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ming semantics and large-grained protection model of 
RPC. For the common case of same-machine communi- 
cation passing small, simple arguments, LRPC achieves 
a factor of three performance improvement over more 
traditional approaches. 

The granularity of the protection mechanisms used 
by an operating system has a significant impact on 
the system’s design and use. Some operating sys- 
tems [Mealy et al. 66, Ritchie & Thompson 741 have 
large, monolithic kernels insulated from user programs 
by simple hardware boundaries. Within the operating 
system itself, though, there are no protection bound- 
aries. The lack of strong firewalls, combined with the 
size and complexity typical of a monolithic system, 
make these systems difficult to modify, debug and val- 
idate. Further, the shallowness of the protection hier- 
archy (typically only two levels) makes the underlying 
hardware directly vulnerable to a large mass of compli- 
cated operating system software. 

Capability systems supporting fine-grained protec- 
tion were suggested as a solution to the problems of 
large-kernel operating systems [Dennis & Van Horn 661. 
In a capability system, each fine-grained object exists 
in its own protection domain, but all live within a single 
name or address space. A process in one domain can 
act on an object in another only by making a protected 
procedure call, transferring control to the second de 
main. Parameter passing is simplified by the existence 
of a global name space containing all objects. Unfortu- 
nately, many found it difficult to efficiently implement 
and program systems that had such fine-grained pro- 
tection. 

In contrast to the fine-grained protection of capa- 
bility systems, some distributed computing environ- 
ments rely on relatively large-gruined protection mech- 
anisms: protection boundaries are defined by machine 
boundaries [Redell et al. 801. Remote Procedure Call 
(RPC) [Birrell & Nelson 841 facilitates the placement 
of subsystems onto separate machines. Subsystems 
present themselves to one another in terms of inter- 
faces implemented by servers. The absence of a global 
address space is ameliorated by automatic stub genera- 
tors and sophisticated run-time libraries that can trans- 
fer arbitrarily complex arguments in messages. RPC is 
a system structuring and programming style that has 
become widely successful, enabling efficient and conve- 
nient communication across machine boundaries. 

Small-kernel operating systems have borrowed the 
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large-grained protection and programming models 
used in distributed computing environments and have 
demonstrated these to be appropriate for managing 
subsystems, even those not primarily intended for re- 
mote operation [Rashid 861. In these small-kernel sys- 
tems, separate components of the operating system 
can be placed in disjoint domains (or address spaces), 
with messages used for all inter-domain communica- 
tion. The advantages of this approach include modular 
structure, easing system design, implementation, and 
maintenance; failure isolation, enhancing debuggabil- 
ity and validation; and transparent access to network 
services, aiding and encouraging distribution. 

In addition to the large-grained protection model of 
distributed computing systems, small-kernel operating 
systems have adopted their control transfer and com- 
munication models - independent threads exchanging 
messages containing (potentially) large, structured val- 
ues. In this paper, though, we show that most com- 
munication traffic in operating systems is (1) between 
domains on the same machine (cross-domain), rather 
than between domains located on separate machines 
(cross-machine), and (2) simple rather than complex. 
Cross-domain communication dominates because oper- 
ating systems - even those supporting distribution - 
localize processing and resources to achieve acceptable 
performance at reasonable cost for the most common 
requests. Most communication is simple because com- 
plex data structures are concealed behind abstract sys- 
tem interfaces - communication tends to involve only 
handles to these structures and small value parameters 
(booleans, integers, etc.). 

Although the conventional message-based approach 
can serve the communication needs of both local and 
remote subsystems, it violates a basic tenet of system 
design by failing to isolate the common case [Lampson 
841. A cross-domain procedure call can be consider- 
ably less complex than its cross-machine counterpart, 
yet conventional RPC systems have not fully exploited 
this fact. Instead, local communication is treated as 
an instance of remote communication, and simple op- 
erations are considered in the same class as complex 
ones. 

Because the conventional approach has high over- 
head, today’s small-kernel operating systems have suf- 
fered from a loss in performance or a deficiency in struc- 
ture or both. Usually structure suffers most; logically 
separate entities are packaged together into a single do- 
main, increasing its size and complexity. Such aggre- 
gation undermines the primary reasons for building a 
small-kernel operating system. The Lightweight Re- 
mote Procedure Call facility that we describe in this 
paper arises from these observations. 

LRPC achieves a level of performance for cross 
domain communication that is significantly better than 
conventional RPC systems while still retaining their 
qualities of safety and transparency. Four techniques 
contribute to the performance of LRPC: 

l Simple control transfer: The client’s thread exe- 

cutes the requested procedure in the server’s do- 
main. 

Simple data transfer: The parameter passing 
mechanism is similar to that used by procedure 
call. A shared argument stack, accessible to both 
client and server, can often eliminate redundant 
data copying. 

Simple stubs: LRPC uses a simple model of con- 
trol and data transfer, facilitating the generation 
of highly optimized stubs. 

Design for conczlwency: LRPC avoids shared 
data structure bottlenecks and benefits from the 
speedup potential of a multiprocessor. 

We have demonstrated the viability of LRPC by im- 
plementing and integrating it into Taos, the operating 
system for the DEC SRC Firefly multiprocessor work- 
station [Thacker et al. 881. The simplest cross-domain 
call using LRPC takes 157 microseconds on a single 
C-VAX processor. By contrast, SRC RPC, the Fire- 
fly’s native communication system [Schroeder & Bur- 
rows 891, takes 464 microseconds to do the same call; 
though SRC RPC h as been carefully streamlined and 
outperforms peer systems, it is a factor of three slower 
than LRPC. The Firefly virtual memory and trap han- 
dling machinery limit the performance of a safe cross- 
domain procedure call to roughly 109 microseconds; 
LRPC adds only 48 microseconds of overhead to this 
lower bound. 

The remainder of this paper discusses LRPC in more 
detail. Section 2 describes the use and performance of 
RPC in existing systems, offering motivation for a more 
lightweight approach. Section 3 describes the design 
and implementation of LRPC. Section 4 discusses its 
performance, and section 5 addresses some of the con- 
cerns that arise when integrating LRPC into a serious 
operating system. 

2 The Use and Performance of 
RPC Systems 

In this section, using measurements from three con- 
temporary operating systems, we show that only a 
smal1 fraction of RPCs are truly remote, and that large 
or complex parameters are rarely passed during non- 
remote operations. We also show the disappointing 
performance of cross-domain RPC in several systems. 
These results demonstrate that simple, cross-domain 
calls represent the common case and can be well-served 
by optimization. 

2.1 Frequency of Cross-Machine 
Activity 

We examined three operating systems to determine the 
relative frequency of cross-machine activity. 
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l The V System 

In V [Cheriton 881, a highly decomposed system, 
only the basic message primitives (Send, Receive, 
etc.) are accessed directly through kernel traps. 
All other system functions are accessed b’y sending 
messages to the appropriate server. Concern for 
efficiency, though, has forced the implementation 
of many of these servers down into the k.ernel. 

In an instrumented version of the V system, 
Williamson found that 97% of calls crossed pro- 
tection, but not machine, boundaries [Williamson 
893. Williamson’s measurements include message 
traffic to kernel-resident servers. 

Taos 

Taos, the Firefly operating system, is divided into 
two major pieces. A medium-sized privileged ker- 
nel accessed through traps is responsible for thread 
scheduling, virtual memory, and device (access. A 
second, multi-megabyte domain accessed through 
RPC implements the remaining pieces of the oper- 
ating system (domain management, local and re- 
mote file systems, window management, network 
protocols, etc.). Taos does not cache rernote files, 
but each Firefly node is equipped with a small disk 
for storing local files to reduce the frequency of 
network operations. 

We measured activity on a Firefly multiprocessor 
workstation connected to a network of other Fire- 
flies and a remote file server. During one five-hour 
work period, we counted 344,888 local RPC calls, 
but only 18,366 network RPCs. Cross-machine 
RPCs thus accounted for only 5.3% of all com- 
munication activity. 

UNIX+NFS 

In UNIX, a large-kernel operating system, all lo- 
cal system functions are accessed through kernel 
traps. RPC is used only to access remote file 
servers. Although a UNIX system call is not imple- 
mented as a cross-domain RPC, in a moire decom- 
posed operating system most calls would1 result in 
at least one such RPC. 

On a diskless Sun 3 workstation running Sun 
UNIX+NFS [Sandberg et al. 851, during a period 
of four days we observed over 100 million operat- 
ing system calls, but fewer than one million RPCs 
to file servers. Inexpensive system calls, encour- 
aging frequent kernel interaction, and file caching, 
eliminating many calls to remote file se:rvers, are 
together responsible for the relatively small num- 
ber of cross-machine operations. 

Table 1 summarizes our measurements of these three 
systems. Our conclusion is that most calls go to tar- 
gets on the same node. While measurements of systems 
taken under different workloads will demonstrate differ- 
ent percentages, we believe that cross-domain activity, 

Percentage of 
Operating Operations That 
System Cross Machine Boundaries 
V 3% 
Taos 5.3% 
Sun Unix+NFS 0.6% 

Table 1: Frequency of Remote Activity 

rather than cross-machine activity, will dominate. Be- 
cause a cross-machine RPC is slower than even a slow 
cross-domain RPC, system builders have an incentive 
to avoid network communication. This incentive man- 
ifests itself in the many different caching schemes used 
in distributed computing systems. 

2.2 Parameter Size and Complexity 

The second part of our RPC evaluation is an exami- 
nation of the size and complexity of cross-domain pro- 
cedure calls. Our analysis considers both the dynamic 
and static usage of SRC RPC as used by the Taos op- 
erating system and its clients. The size and maturity 
of the system make it a good candidate for study .- 
our version includes 28 RPC services defining 366 pro- 
cedures involving over 1000 parameters. 

We counted 1,487,105 cross-domain procedure calls 
during one four-day period. Although 112 different pro- 
cedures were called, 95% of the calls were to ten pro- 
cedures, and 75% were to just three. None of the stubs 
for these three were required to marshal complex ar- 
guments - byte copying was sufficient to transfer the 
data between domains. ’ 

In the same four days, we also measured the num- 
ber of bytes transferred between domains during cross- 
domain calls. Figure 1, a histogram and cumulative 
distribution of this measure, shows that the most fre- 
quently occurring calls transfer fewer than 50 bytes, 
and a majority transfer fewer than 200. 

Statically, we found that four out of five parame- 
ters were of fixed size known at compile time; sixty-five 
percent were four bytes or fewer. Two-thirds of all pro- 
cedures passed only parameters of fixed size, and sixty 
percent transferred 32 or fewer bytes. No data types 
were recursively defined so as to require recursive mar- 
shaling (such as linked lists or binary trees). Recursive 
types were passed through RPC interfaces, but these 
were marshaled by system library procedures, rather 
than by machine-generated code. 

These observations indicate that simple byte copying 
is usually sufficient for transferring data across system 
interfaces, and that the majority of interface procedures 
move only small amounts of data. 

lSRC RPC maps domain-specific pointers into and out of 
network-wide unique representations, enabling pointers to be 
passed back and forth across an RPC interface. The mapping 
is done by a simple table-lookup, and was necessary for two of 
the top three procedures. 

104 



300 

250 

Number 200 

of 
Calls 150 

(thousands) 
100 

Maximum Single 5oY0 Cumulative 
Distribution 

1 1~1~~1 . -- --_...~I I I I I I , 0% 
50 200 500 750 1000 1450 1800 

Total Argument/Result Bytes Transferred 

Figure 1: RPC Size Distribution 

Others have noticed that most interprocess com- 
munication is simple, passing mainly small parame- 
ters [Cook 78, Cheriton 88, Karger 891, and some have 
suggested optimizations for this case. V, for exam- 
ple, uses a message protocol that has been optimized 
for fixed-sized messages of 32 bytes. Karger describes 
compiler-driven techniques for passing parameters in 
registers during cross-domain calls. These optimiza- 
tions, although sometimes effective, only partially ad- 
dress the performance problems of cross-domain com- 
munication. 

2.3 The Performance of Cross-Domain 
RPC 

In existing RPC systems, cross-domain calls are im- 
plemented in terms of the facilities required by cross- 
machine ones. Even through extensive optimization, 
good cross-domain performance has been difficult to 
achieve. Consider the Null procedure call that takes no 
arguments, returns no values and does nothing: 

PROCEDURE Null(); BEGIN RETURN END Null; 

The theoretical minimum time to invoke Null0 as 
a cross-domain operation involves one procedure call, 
followed by a kernel trap and change of the proces- 
sor’s virtual memory context on call, and then a trap 
and context change again on return. The difference be- 
tween this theoretical minimum call time and the actual 
Null call time reflects the overhead of a particular RPC 
system. Table 2 shows this overhead for six systems. 
The data in Table 2 comes from measurements of our 
own and from published sources [Fitzgerald 86, Tzou 
& Anderson 88, van Renesse et al. 881. 

The high overheads revealed by Table 2 can be at- 
tributed to several aspects of conventional RPC: 

l Stub overhead: Stubs provide a simple procedure 
call abstraction, concealing from programs the in- 

terface to the underlying RPC system. The dis- 
tinction between cross-domain and cross-machine 
calls is usually made transparent to the stubs by 
lower levels of the RPC system. This results in an 
interface and execution path that are general but 
infrequently needed. For example, it takes about 
70 microseconds to execute the stubs for the Null 
procedure call in SRC RPC. Other systems have 
comparable times. 

l Message buffer overhead: Messages need to be al- 
located and passed between the client and server 
domains. Cross-domain message transfer can in- 
volve an intermediate copy through the kernel, re- 
quiring four copy operations for any RPC (two on 
call, two on return). 

l Access Validation: The kernel needs to validate the 
message sender on call and then again on return. 

l Message transfer: The sender must enqueue the 
message, which must later be dequeued by the re- 
ceiver. Flow-control of these queues is often nec- 
essary. 

l Scheduling: Conventional RPC implementations 
bridge the gap between abstract and concrete 
threads. The programmer’s view is one of a sin- 
gle, abstract thread crossing protection domains, 
while the underlying control transfer mechanism 
involves concrete threads fixed in their own domain 
signalling one another at a rendezvous. This indi- 
rection can be slow, as the scheduler must manip- 
ulate system data structures to block the client’s 
concrete thread and then select one of the server’s 
for execution. 

l Conted switch: There must be a virtual mem- 
ory context switch from the client’s domain to the 
server’s on call, and then back again on return. 
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System Processlor Null Null 0 verhead 
(Theoretical (Actual) 
Minimum) 

Accent- 2300 444 1856 
Taos Firefly C-VAX 109 464 355 
Mach C-VAX. 90 754 664 
V 68020 170 730 560 
Amoeba 68020 170 800 630 
DASH 68020 170 1590 1420 

Table 2: Cross-Domain Performance (times are in microseconds) 

l Dispatch: A receiver thread in the server do 
main must interpret the message and dispatch a 
thread to execute the call. If the receiver is self- 
dispatching, it must ensure that another thread 
remains to collect messages that may arrive before 
the receiver finishes to prevent caller serialization. 

RPC systems have optimized some of these steps in 
an effort to improve cross-domain performance. The 
DASH system [‘Tzou & Anderson 881 eliminates an in- 
termediate kernel copy by allocating messages out of 
a region specially mapped into both kernel and user 
domains. Mach [Jones & Rashid 861 and Taos rely 
on handog scheduling to bypass the general, slower 
scheduling path; instead, if the two concrete threads 
cooperating in a domain transfer are identifiable at the 
time of the transfer, a direct context switch can be 
made. In line with handoff scheduling, some systems 
pass a few, small arguments in registers, thereby elim- 
inating buffer copying and management. ’ 

SRC RPC represents perhaps the most ambitious 
attempt to optimize traditional RPC for swift cross- 
domain operation. Unlike techniques used in other sys- 
tems which provide safe communication between mu- 
tually suspicious parties, SRC RPC trades safety for 
increased performance. To reduce copying, message 
buffers are globally shared across all domains. A single 
lock is mapped into all domains so that message buffers 
can be acquired and released without kernel involve- 
ment. Further, access validation is not performed on 
call and return, simplifying the critical transfer path. 

SRC RPC runs much faster than other RPC systems 
implemented on comparable hardware. Nevertheless, 
SRC RPC still incurs a large overhead due to its use 
of heavyweight stubs and run-time support, dynamic 
buffer management, multi-level dispatch, and interac- 
tion with global scheduling state. 

20ptimizations based on passing arguments in registers ex- 
hibit a performance discontinuity once the parameters overflow 
the registers. The data in Figure 1 indicates that this can be a 
frequent problem. 

3 The Design and Implementa- 
tion of LRPC 

The lack of good performance for cross-domain calls 
has encouraged system designers to coalesce cooperat- 
ing subsystems into the same domain. Applications use 
RPC to communicate with the operating system, en- 
suring protection and failure isolation for users and the 
collective system. The subsystems themselves, though, 
grouped into a single protection domain for perfor- 
mance reasons, are forced to rely exclusively on the thin 
barriers provided by the programming environment for 
protection from one another. LRPC solves, rather then 
circumvents, this performance problem in a way that 
does not sacrifice safety. 

The execution model of LRPC is borrowed from pro- 
tected procedure call. A call to a server procedure is 
made by way of a kernel trap. The kernel validates 
the caller, creates a call linkage, and dispatches the 
client’s concrete thread directly to the server domain. 
The client provides the server with an argument stack 
as well as its own concrete thread of execution. When 
the called procedure completes, control and results re- 
turn through the kernel back to the point of the client’s 
call. 

The programming semantics and large-grained pro- 
tection model of LRPC are borrowed from RPC. 
Servers execute in a private protection domain, and 
each exports one or more interfaces, making a specific 
set of procedures available to other domains. A client 
binds to a server interface before making the first call. 
The server, by allowing the binding to occur, autho- 
rizes the client to access the procedures defined by the 
interface. 

3.1 Binding 

At a conceptual level, LRPC binding and RPC binding 
are similar. Servers export interfaces and clients bind 
to those interfaces before using them. At a lower-level, 
however, LRPC binding is quite different due to the 
high degree of interaction and cooperation that is re- 
quired of the client, server and kernel. 

A server module exports an interface through a clerk 
in the LRPC run-time library included in every domain. 
The clerk registers the interface with a name server and 
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awaits import requests from clients. A client binds to 
a specific interface by making an import call via the 
kernel. The importer waits while the kernel notifies 
the server’s waiting clerk. 

The clerk enables the binding by replying to the ker- 
nel with a procedure descriptor list (PDL) that is main- 
tained by the exporter of every interface. The PDL 
contains one procedure desctiptor (PD) for each proce- 
dure in the interface. The PD includes an entry ad- 
dress in the server domain, the number of simultane- 
ous calls initially permitted to the procedure by the 
client, and the size of the procedure’s argtiment stack 
(A-stack) on which arguments and return values will be 
placed during a call. For each PD, the kernel pair-wise 
allocates in the client and server domains a number 
of A-stacks equal to the number of simultaneous calls 
allowed. These A-stacks are mapped read-write and 
shared by both domains. 

Procedures in the same interface having A-stacks of 
similar size can share A-stacks, reducing the storage 
needs for interfaces with many procedures. The number 
of simultaneous calls initially permitted to procedures 
that are sharing A-stacks is limited by the total number 
of A-stacks being shared. This is only a soft limit, 
though, and Section 5.2 describes how it can be raised. 

The kernel also allocates a linkage record for each 
A-stack that is used to record a caller’s return address 
and is accessible only to the kernel. The kernel lays out 
A-stacks and linkage records in memory in a way such 
that the correct linkage record can be quickly located 
given any address in the corresponding A-stack. 

After the binding has completed, the kernel returns 
to the client a Binding Object. The Binding Object 
is the client’s key for accessing the server’s interface 
and must be presented to the kernel at each call. The 
kernel can detect a forged Binding Object, so clients 
cannot bypass the binding phase. In addition to the 
Binding Object, the client receives an A-stack list for 
each procedure in the interface giving the size and lo- 
cation of the A-stacks that should be used for calls into 
that procedure. 

3.2 Calling 

Each procedure in an interface is represented by a stub 
in the client and server domains. A client makes an 
LRPC by calling into its stub procedure which is re- 
sponsibIe for initiating the domain transfer. The stub 
manages the A-stacks allocated at bind time for that 
procedure as a LIFO queue. At call time, the stub 
takes an A-stack off the queue, pushes the procedure’s 
arguments onto the A-stack, puts the address of the 
A-stack, the Binding Object and a procedure identifier 
into registers, and traps to the kernel. In the context 
of the client’s thread, the kernel 

l verifies the Binding and procedure identifier 
l verifies the A-stack and locates the corresponding 

linkage 

ensures that no other thread is currently using that 
A-stack/linkage pair 
records the caller’s return address and current 
stack pointer in the linkage 
pushes the linkage onto the top of a stack of link- 
ages kept in the thread’s control block3 
finds an execution stack (E-stack) in the server’s 
domain 
updates the thread’s user stack pointer to run off 
of the new E-stack 
reloads the processor’s virtual memory registers 
with those of the server domain 
performs an upcall [Clark 851 into the server’s stub 
at the address specified in the PD for the requested 
procedure. 

Arguments are pushed onto the A-stack according to 
the calling conventions of Modula2+ [Rovner et al. 851. 
Since the A-stack is mapped into the server’s domain, 
the server procedure can directly access the parame- 
ters as though it had been called directly. It’s impor- 
tant to note that this optimization relies on a calling 
convention that uses a separate argument pointer. In 
a language environment that required arguments to be 
passed on the E-stack, this optimization would not be 
possible. 

The server procedure returns through its own stub, 
which initiates the return domain transfer by trapping 
to the kernel. Unlike the call, which required presenta- 
tion and verification of the Binding Object, procedure 
identifier and A-stack, this information, contained at 
the top of the linkage stack referenced by the thread’s 
control block, is implicit in the return. There is no need 
to verify the returning thread’s right to transfer back 
to the calling domain since it was granted at call time. 
Further, since the A-stack contains the procedure’s re- 
turn values, and the client specified the A-stack on call, 
no explicit message needs to be passed back. 

If any parameters are passed by reference, the client 
stub copies the referent onto the A-stack. The server 
stub creates a reference to the data and places the ref- 
erence on its private E-stack before invoking the server 
procedure. The reference must be recreated to prevent 
the caller from passing in a bad address. The data, 
though, is not copied and remains on the A-stack. 

Privately mapped E-stacks enable a thread to safely 
cross between domains. Conventional RPC systems 
provide this safety by implication, deriving separate 
stacks from separate threads. LRPC excises this level 
of indirection, dealing directly with less weighty stacks. 

A low-latency domain transfer path requires that E- 
stack management incur little call-time overhead. One 
way to achieve this is to statically allocate E-stacks at 
bind time and to permanently associate each with an 
A-stack. Unfortunately, E-stacks can be large (tens of 
kilobytes) and must be managed conservatively; oth- 
erwise a server’s address space could be exhausted by 
just a few clients. 

3The stack is necessary so that a thread can be involved in 
more than one cross-domain procedure call at a time. 
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Rather than statically allocating E-stacks, LRPC de- 
lays the A-stack/E-stack association until it is needed; 
that is, until a call is made with an A-stack not having 
an associated E-stack. When this happens, the kernel 
checks if there is an E-stack already alloca,ted in the 
server domain, but currently unassociated with any A- 
stack. If so, the kernel associates the E-stack with the 
A-stack. Otherwise, the kernel allocates an E-stack out 
of the server domain and associates it with the A-stack. 
When the call returns, the E-stack and A-stack remain 
associated with one another so that they mig;ht be used 
together soon for another call (A-stacks are LIFO man- 
aged by the client). Whenever the supply of E-stacks 
for a given server domain runs low, the kernel reclaims 
those associated with A-stacks that have not been re- 
cently used. 

3.3 Stub Generation 

Stubs bridge the gap between procedure call, the com- 
munication model used by the programmer, and do- 
main transfer, the execution model of LRPC. A proce- 
dure is represented by a call stub in the client’s domain 
and an entry stub in the server’s. Every procedure de- 
clared in an LRPC interface defines the terminus of a 
three-layered communication protocol: end-to-end, de- 
scribed by the calling conventions of the programming 
language and architecture; stub-to-stub, implemented 
by the stubs themselves; and domain-to-domain, im- 
plemented by the kernel. 

LRPC stubs blur the boundaries between the proto- 
col layers to reduce the cost of crossing between them. 
Server entry stubs are invoked directly by the kernel on 
a transfer; no intermediate message examination and 
dispatch is required. The kernel primes E-stacks with 
the initial call frame expected by the server’s proce- 
dure, enabling the server stub to branch to the first in- 
struction of the procedure. As a result, a simple LRPC 
needs only one formal procedure call (into the client 
stub), and two returns (one out of the server procedure 
and one out of the client stub). 

The LRPC stub generator produces run-time stubs 
in assembly language directly from Modula2+ defini- 
tion files. The use of assembly language is possible 
because of the simplicity and stylized nature of LRPC 
stubs, which consist mainly of move and trap instruc- 
tions. The LRPC stubs have shown a factor of four 
performance improvement over ModulaZ+ stubs cre- 
ated by the SRC RPC stub generator. 

Since the stubs are automatically generated., the only 
maintenance concerns arising from this use of assembly 
language are related to the portability of the stub gen- 
erator (the stubs themselves are not portable, but we 
don’t consider this to be an issue). Porting the stub 
generator to work on a different machine architecture 
should be a straightforward task, although we have not 
yet had any reason to do so. 

The stub generator emits Modula2f code for more 
complicated, but less frequently traveled execution 

paths, such as those dealing with binding, exception 
handling, and call failure. Calls having complex or 
heavyweight parameters - linked lists or data that 
must be made known to the garbage collector - are 
handled with Modula2+ marshaling code. LRPC stubs 
become more like conventional RPC stubs as the over- 
head of dealing with the complicated data types in- 
creases. This shift occurs at compile-time, eliminating 
the need to make run-time decisions. 

3.4 LRPC on a Multiprocessor 

The existence of shared-memory multiprocessors has 
influenced the design of LRPC. Multiple processors can 
be used to achieve a higher call throughput and lower 
call latency than is possible on a single processor. 

LRPC increases throughput by minimizing the use of 
shared data structures on the critical domain transfer 
path. Each A-stack queue is guarded by its own lock, 
and queuing operations take less than 2% of the total 
call time. No other locking occurs, so there is little 
interference when calls occur simultaneously. 

Multiple processors are used to reduce LRPC latency 
by caching domain contexts on idle processors. As we 
show in Section 4, the context switch that occurs during 
an LRPC is responsible for a large part of the transfer 
time. This time is due partly to the code required to 
update the hardware’s virtual memory registers, and 
partly to the extra memory fetches that occur as a 
result of invalidating the translation lookaside buffer 
(TLB). 

LRPC reduces context-switch overhead by caching 
domains on idle processors. When a call is made, the 
kernel checks for a processor idling in the context of the 
server domain. If one is found, the kernel exchanges 
the processors of the calling and idling threads, placing 
the calling thread on a processor where the context of 
the server domain is already loaded; the called server 
procedure can then execute on that processor without 
requiring a context switch. The idling thread continues 
to idle, but on the client’s original processor in the con- 
text of the client domain. On return from the server, a 
check is also made. If a processor is idling in the client 
domain (likely for calls that return quickly), then the 
processor exchange can be done again. 

If no idle domain can be found on call or return, then 
a single-processor context switch is done. For each do- 
main, the kernel keeps a counter indicating the number 
of times that a processor idling in the context of that 
domain was needed but not found. The kernel uses 
these counters to prod idle processors to spin in do- 
mains showing the most LRPC activity. 

The high cost of frequent domain crossing can also be 
reduced by using a TLB that includes a process tag. For 
multiprocessors without such a tag, domain-caching 
can often achieve the same result for commonly called 
servers. Even with a tagged TLB, a single-processor do- 
main switch still requires that hardware mapping reg- 
isters be modified on the critical transfer path; domain 
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Operation 
Message Restricted Message 

LRPC Passing Passing 
call mutable A ABCE ADE 

parameters) 

call (immutable AE 
parameters) 

ABCE ADE 

return F BCF BF 

Code Copy Operation 
A copy from client stack to message (or A-stack) 
B copy from sender domain to kernel domain 
C copy from kernel domain to receiver domain 
D copy from sender/kernel space to receiver/kernel domain 
E copy from message (or A-stack) into server stack 
F copy from message (or A-stack) into client’s results 

Table 3: Copy Operations For LRPC Vs. Message-Based RPC 

caching does not. Finally, domain caching preserves 
per-processor locality across calls -a performance con- 
sideration for systems having low tolerance for sudden 
shifts in locality. 

Using idle processors to decrease operating system 
latency is not a new idea. Both Amoeba and Taos 
cache recently blocked threads on idle processors to re- 
duce wakeup latency. LRPC generalizes this technique 
by caching domains, rather than threads. In this way, 
any thread that needs to run in the context of an idle 
domain can do so quickly, not just the thread that ran 
there most recently. 

3.5 Argument Copying 

Consider the path taken by a procedure’s argument 
during a traditional cross-domain RPC. An argument, 
beginning with its placement on the stack of the client 
stub, is copied 4 times - from the stub’s stack to the 
RPC message, from the message in the client’s domain 
to one in the kernel’s, from the message in the kernel’s 
domain to one in the server’s, and from the message 
to the server’s stack. The same argument in an LRPC 
can be copied only once: from the stack of the client 
stub to the shared A-stack from which it can be used 
by the server procedure. 

Pair-wise allocation of A-stacks enables LRPC to 
copy parameters and return values only as many times 
as are necessary to ensure correct and safe operation. 
Protection from third-party domains is guaranteed by 
the pair-wise allocation that provides a private channel 
between the client and server. It is still possible for a 
client or server to asynchronously change the values of 
arguments in an A-stack once control has transferred 
across domains. The copying done by message-based 
RPC prevents such changes, but often at a higher cost 
than necessary. LRPC, by considering each argument 
individually, avoids extra copy operations by taking ad- 
vantage of argument passing conventions, by exploiting 

a value’s correctness semantics, and by combining the 
copy into a check for the value’s integrity. 

In most procedure call conventions, the destination 
address for return values is specified by the caller. Dur- 
ing the return from an LRPC, the client stub copies 
returned values from the A-stack into their final desti- 
nation. No added safety comes from first copying these 
values out of the server’s domain into the client’s, either 
directly or by way of the kernel. 

Parameter copying can also be avoided by recogniz- 
ing situations in which the actual value of the param- 
eter is unimportant to the server. This occurs when 
parameters are processed by the server without inter- 
pretation. For example, the Write procedure exported 
by a file server takes an array of bytes to be written to 
disk. The array itself is not interpreted by the server, 
which is made no more secure by an assurance that the 
bytes won’t change during the call. Copying is unnec- 
essary in this case. These types of arguments can be 
identified to the LRPC stub generator. 

Finally, concern for type safety motivates explicit ar- 
gument copying in the stubs, rather than wholesale 
message copying in the kernel. In a strongly-typed lan- 
guage, such as Modula2+, actual parameters must con- 
form to the types of the declared formals; for example, 
the Modula2+ type CARDINAL is restricted to the set 
of positive integers - a negative value will result in a 
run-time error when the value is used. A client could 
crash a server by passing it an unwanted negative value. 
To protect itself, the server must check type-sensitive 
values for conformancy before using them. Folding this 
check into the copy operation can result in less work 
than if the value is first copied by the message system 
and then later checked by the stubs. 

Table 3 shows how the use of A-stacks in LRPC 
can affect the number of copying operations. For calls 
where parameter immutability is important, and for 
those where it isn’t, we compare the behavior of LRPC 
against the traditional message-passing approach, and 
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Test Description LRPC/MP LRPC Taos 
N 11 
AdUd 

the Null cross-domam cali 125 157 464 
a procedure taking two 4-byte arguments 

and returning one Cbyte argument 130 164 480 
BigIn a procedure taking one 200-byte argument 173 192 539 
BigInOut a procedure taking and then returning one 

200-byte argument 219 227 636 

Table 4: LRPC Performance of Four Tests (in microseconds) 

against a more restricted form of message-passing used 
in the DASH system. In the restricted form, all mes- 
sage buffers on the system are allocated from a spe- 
cially mapped region that enables the kernel to copy 
messages directly from the sender’s domain into the re- 
ceiver’s, avoiding an intermediate kernel cop;y. 

In Table 3, we assume that the server places the re- 
sults directly into the reply message. If this isn’t the 
case (i.e., messages are managed as a scarce resource), 
then one more copy from the server’s results into the 
reply message is needed. Even when the immutabil- 
ity of parameters is important, LRPC performs fewer 
copies (3) than either message passing (7) or restricted 
message passing (5). 

For passing large values, copying concerns be- 
come less important, since by-value semantics can be 
achieved through virtual memory operations. But, for 
the more common case of small- to medium-sized val- 
ues, eliminating copy operations is crucial to good per- 
formance when call latency is on the order of only 100 
instructions. 

LRPC’s A-stack/E-stack design offers both safety 
and performance. While our implementation demon- 
strates the performance of this design, the Firefly op- 
erating system does not yet support pairAw!ise shared 
memory. Our current implementation places A-stacks 
in globally shared virtual memory. Since mapping is 
done at bind time, an implementation using pair-wise 
shared memory would have identical performance, but 
greater safety. 

4 The Performance of LR,PC 

To evaluate the performance of LRPC, we used the four 
tests shown in Table 4. These tests were run on the C- 
VAX Firefly using LRPC and Taos RPC. The Null call 
provides a baseline against which we can measure the 
added overhead of LRPC. The procedures Add, BigIn, 
and BigInOut represent calls having “typical” parame- 
ter sizes. 

Table 4 shows the results of these tests when per- 
formed on a single node. The measurements were made 
by performing 100,000 cross-domain calls in a tight 
loop, computing the elapsed time, and then dividing 
by 100,000. The table shows two times -:br LRPC. The 
first, listed as “LRPC/MP,” uses the idle processor op- 
timization described in Section 3.4. The second, shown 
as “LRPC,” executes the domain switch on a single 

processor; it is roughly 3 times faster than SRC RPC, 
which also uses only one processor. 

Table 5 shows a detailed cost breakdown for the se- 
rial (l-processor) Null LRPC on a C-VAX. This table 
was produced from a combination of timing measure- 
ments and hand calculations of TLB misses. The code 
to execute a Null LRPC consists of 120 instructions 
that require 157 microseconds to execute. The column 
labeled “Minimum” in Table 5 is a timing breakdown 
for the theoretically minimum cross-domain call (one 
procedure call, two traps and two context switches). 
The column labeled “LRPC Overhead” shows the ad- 
ditional time required to execute the call and return 
operations described in Section 3.2 and is the cost of 
our implementation. For the Null call, approximately 
18 microseconds are spent in the client stub and 3 in 
the server’s. The remaining 27 microseconds of over- 
head are spent in the kernel, and go towards binding 
validation and linkage management. Most of this takes 
place during the call, as the return path is simpler. 

Operation IM inimum LRPC 

I 0 verhead 
Modula2+ Procedure Call I 7 

si ~s~~~ches 1 I 

Table 5: Breakdown of Time (in microseconds) for Sin- 
gle Processor Null LRPC 

Approximately 25% of the time used by the Null 
LRPC is due to TLB misses that occur during vir- 
tual address translation. A context switch on a C-VAX 
requires the invalidation of the TLB, and each subse- 
quent TLB miss increases the cost of a memory refer- 
ence by about .9 microseconds. Anticipating this, the 
data structures and control sequences of LRPC were 
designed to minimize TLB misses. Even so, we esti- 
mate that 43 TLB misses occur during the Null call. 

Section 3.4 stated that LRPC avoids locking shared 
data during call and return in order to remove con- 
tention on shared-memory multiprocessors. This is 
demonstrated by Figure 2, which shows call through- 
put as a function of the number of processors simulta- 
neously making calls. Domain caching was disabled for 
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Figure 2: Call Throughput On a Multiprocessor 

this experiment - each call required a context switch. 
A single processor can make about 6300 LRPCs per sec- 
ond, but four processors can make over 23000 calls per 
second - a speedup of 3.7 and close to the maximum 
that the Firefly is capable of delivering. These measure- 
ments were made on a Firefly having four C-VAX pro- 
cessors and one MicroVaxII I/O processor. Measure- 
ments on a five processor MicroVaxII Firefly showed a 
speedup of 4.3 with 5 processors. 

In contrast, the throughput of SRC RPC levels off 
with two processors at about 4000 calls per second. 
This limit is due to a global lock that is held during a 
large part of the RPC transfer path. For a machine like 
the Firefly, a small scale shared-memory multiproces- 
sor, a limiting factor of two is annoying, but not serious. 
On shared-memory machines with just a few dozen pro- 
cessors, though, contention on the critical control trans- 
fer path would have a greater performance impact. 

5 The Uncommon Cases 

In addition to working well in the common case, LRPC 
must work acceptably in the less common ones. This 
section describes several of these less common cases and 
explains how they are dealt with by LRPC. This section 
does not enumerate all possible uncommon cases that 
must be considered. Instead, by describing just a few, 
we hope to emphasize that the common-case approach 
taken by LRPC is flexible enough to accommodate the 
uncommon cases gracefully. 

5.1 Transparency and Cross-Machine 
Calls 

Deciding whether a call is cross-domain or cross- 
machine is made at the earliest possible moment - 
the first instruction of the stub. If the call is to a truly 
remote server (indicated by a bit in the Binding Ob- 
ject), then a branch is taken to a more conventional 
RPC stub. The extra level of indirection is negligible 

compared to the overheads that are part of even the 
most efficient network RPC implementation. 

5.2 A-stacks - Size and Number 

Procedure Descriptor Lists are defined during the com- 
pilation of an interface. The stub generator reads each 
interface and determines the number and size of the A- 
stacks for each procedure. The number defaults to five, 
but can be overridden by the interface writer. When 
the size of each of a procedure’s arguments and return 
values are known at compile time, the A-stack size can 
be determined exactly. In the presence of variable sized 
arguments, though, the stub generator uses a default 
size equal to the Ethernet packet size (this default also 
can be overridden). Experience has shown, and Fig- 
ure 1 confirms, that RPC programmers strive to keep 
the sizes of call and return parameters under this limit. 
Most existing RPC protocols are built on simple packet 
exchange protocols, and multi-packet calls have perfor- 
mance problems. In cases where the arguments are too 
large to fit into the A-stack, the stubs transfer data in 
a large out-of-band memory segment. Handling unex- 
pectedly large parameters is complicated and relatively 
expensive, but infrequent. 

A-stacks in a single interface are allocated contigu- 
ously at bind time to allow for quick validation during 
a call (a simple range check guarantees their integrity). 
If the number of pre-allocated A-stacks proves too few, 
the client can either wait for one to become avail- 
able (when an earlier call finishes), or allocate more. 
Waiting is simple, but may not always be appropriate. 
When further allocation is necessary, it is unlikely that 
space contiguous to the original A-stacks will be found, 
but other space can be used. A-stacks in this space, 
not in the primary contiguous region, will take slightly 
more time to vahdate during a call. 

5.3 Domain Termination 

A domain can terminate at any time, for reasons such 
as an unhandled exception or a user action (CTRL-C). 
When a domain terminates, all resources in its pos- 
session (virtual address space, open file descriptors, 
threads, etc.) are reclaimed by the operating system. If 
the terminating domain is a server handling an LRPC 
request, the call, completed or not, must return to the 
client domain. If the terminating domain is a client 
with a currently outstanding LRPC request to another 
domain, the outstanding call, when finished, must not 
be allowed to return to its originating domain. 

When a domain is terminated, each Binding Object 
associated with that domain (either as client or server) 
is revoked. This prevents any more out-calls from the 
domain, and prevents other domains from making any 
more in-calls. All threads executing within the domain 
are then stopped, and a kernel collector scans all of 
the domain’s threads looking for any that had been 
running on behalf of an LRPC call; these threads are 
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restarted in the client with a call-failed exception. Fi- 
nally, the collector scans all Binding Objects held by 
the terminating domain and invalidates any active link- 
age records. When a thread returns from an LRPC call, 
it follows the stack of linkage records referenced by the 
thread control block, returning to the domain specified 
in the first valid linkage record. If any invalid linkage 
records are found on the way, a call-failed exception 
is raised in the caller. If the stack contains no valid 
linkage records, the thread is destroyed. 

A terminating domain’s outstanding threads are not 
forced to terminate synchronously with the domain. 
Doing so would require every server procedure to pro- 
tect the integrity of its critical data structures from 
external forces, since a mutating thread coulld be ter- 
minated at any time. More generally, LRPC has no 
way to force a thread to return from an outstanding 
call. Taos does have an alert mechanism which allows 
one thread to signal another, but the notified thread 
may choose to ignore the alert. It is therefore possi- 
ble for one domain to “capture” another’s thread and 
hold it indefinitely. To address this problem, LRPC 
enables client domains to create a new thread whose 
initial state is that of the original captured thread as if 
it had just returned from the server procedure with a 
call-aborted exception. The captured thread continues 
executing in the server domain but is destroyed in the 
kernel when released. 

Traditional RPC does not have these problems be- 
cause the abstract thread seen by the progratmmer is 
provided by two concrete threads, one in each of the 
client and server domains. Because premature domain 
and call termination are infrequent, LRPC has adopted 
a “special case” approach for dealing with them. 

6 Summary 

This paper has described the motivation, design, im- 
plementation, and performance of LRPC, a commu- 
nication facility that combines elements of capability 
and RPC systems. Our implementation on the Fire- 
fly achieves performance that is close to the minimum 
round-trip cost of transferring control between domains 
on conventional hardware. 

LRPC adopts a common-case approach to commu- 
nication, exploiting, whenever possible, simple control 
transfer, simple data transfer, simple stubs, and mul- 
tiprocessors. In so doing, LRPC performs well for the 
majority of cross-domain procedure calls by avoiding 
needless scheduling, excessive run-time indirection, un- 
necessary access validation, redundant copying, and 
lock contention. LRPC, nonetheless, is safe and trans- 
parent, and represents a viable communication alterna- 
tive for small-kernel operating systems. 
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