Efficient Striping Techniques for Multimedia File Servers

Prashant J. Shenoy and Harrick M. Vin

Distributed Multimedia Computing Laboratory
Department of Computer Sciences, University of Texas at Austin
Taylor Hall 2.124, Austin, Texas 78712-1188, USA

E-mail: {shenoy,vin}@cs.utexas.edu, Telephone: (512) 471-9732, Fax: (512) 471-8885
URL: http://www.cs.utexas.edu/users/dmcl

Abstract

The performance of striped disk arrays is governed by two parameters: the stripe unit size and the degree of striping. In this paper, we describe techniques for determining the stripe unit size and degree of striping for disk arrays storing variable bit rate continuous media data. We present an analytical model that uses the server configuration and the workload characteristics to predict the load on the most heavily loaded disk in redundant and non-redundant arrays. We then use the model to determine the optimal stripe unit size for different workloads. We also use the model to study the effect of various system parameters on the optimal stripe unit size. To determine the degree of striping, we first demonstrate that striping a continuous media stream across all disks in the array causes the number of clients supported to increase sub-linearly with increase in the number of disks. To maximize the number of clients supported in large arrays, we propose a technique that partitions a disk array and stripes each media stream across a single partition. Since load imbalance can occur in such partitioned arrays, we present an analytical model to compute the imbalance across partitions in the array. We then use the model to determine a partition size that minimizes the load imbalance, and hence, maximizes the number of clients supported by the array.

1 Introduction

1.1 Motivation

Advances in computing and communication technologies over the past few years have triggered the development of a wide range of information services (e.g., electronic newspapers, distance learning and self-paced education, video mail, etc.). All of these services involve storing, accessing, and processing multiple types of information (e.g., text, audio, video, imagery, etc., - which we collectively refer to as multimedia). Realizing such services will require the development of file servers that can efficiently handle multiple data types. To do so, such file servers will be required to employ efficient placement techniques.

To help formulate the problem of efficient placement, let us first introduce some terminology. Digitization of audio yields a sequence of samples and that of video yields a sequence of frames. A continuously recorded sequence of audio samples or video frames is referred to as a media stream. Due to the large storage and bandwidth requirements of such media streams, multimedia file servers are generally founded on disk arrays. To efficiently utilize a disk array, such servers interleave (i.e., stripe) media streams across disks in the array. A striping policy is governed by two parameters: the stripe unit size, which denotes the maximum amount of logically contiguous data stored on a single disk; and the degree of striping, which refers to the number of disks across which a particular media stream is striped.

Recently, techniques for determining the stripe unit size and the degree of striping for conventional workloads consisting of textual and numeric data accesses have been proposed [3, 5, 14]. However, these techniques are not directly applicable to file servers optimized for storing audio or video (referred to as continuous media) due to the following fundamental characteristics:

- Real-time requirements of continuous media: Textual and numeric data accesses require good response times but no absolute performance guarantees. In contrast, due to its real-time nature, continuous media accesses require the file server to provide bounds on response times. Hence, a stripe unit size that minimizes the average response time is considered optimal for textual and numeric data [3], while a stripe unit size that minimizes the tail of the response time distribution (possibly at the expense of an increased average response time) is more desirable for continuous media data.

This fundamental difference in the optimization criterion has a significant impact on the selection of stripe unit size. To illustrate, consider Figure 1(a), which depicts the histogram of the response time observed...
for two different stripe unit sizes (obtained using a workload of 60 video clients accessing an array of 16 disks). It shows that stripe unit sizes of 32KB and 64KB yield average response times of 30ms and 32ms, respectively. The figure also shows that the histogram for the 32KB stripe unit size has a longer tail. If data accesses do not impose any real-time constraints, 32KB would be chosen as the appropriate stripe unit size. For accesses with real-time constraints, a stripe unit size of 64KB would be more desirable. As shown in Figure 1(b), the block size that minimizes the average response time continues to differ from one that minimizes the 90th percentile of the response time (i.e., the tail of the histogram) over a wide range of client workloads.

- **Periodic and sequential nature of continuous media:** In general, textual and numeric data accesses consist of reads and writes that are aperiodic and random, while continuous media workloads consist of reads and writes that are sequential and periodic. These differences in access characteristics not only affect the optimal stripe unit size, but also result in a fundamentally different server architecture. Specifically, due to the sequential and periodic nature of data accesses, most multimedia servers service continuous media requests by periodically accessing and transmitting data, without an explicit request from the client for each access. Such a server-push architecture is markedly different from the client-pull architecture employed in conventional file servers (in which data is accessed by the server only in response to an explicit client request). Differences in the server architecture also affect the stripe unit size selection process.

Due to these differences, novel techniques that optimize the performance of a multimedia file server for continuous media data must be developed.

1.2 Research Contributions of This Paper

In this paper, we propose techniques for determining the stripe unit size and the degree of striping for file servers storing variable bit rate continuous media data. We consider a file server that services clients by proceeding in terms of periodic rounds and argue that, in such environments, a stripe unit size that minimizes the service time (i.e., the total time spent in retrieving the data requested in a round) of the most heavily loaded disk is optimal. To determine the optimal stripe unit size, we develop an analytical model that uses the server configuration and a distribution of the number of blocks accessed by a client in a round to predict the service time of the most heavily loaded disk in both redundant and non-redundant arrays. By determining the service time of the most heavily loaded disk over a range of block sizes, a stripe unit size that minimizes the service time can be chosen. We validate the accuracy of our model through extensive trace-driven simulations. We demonstrate that, contrary to conventional wisdom, a large stripe unit size does not necessarily yield good server performance. Instead, such a stripe unit size can adversely affect the quality of service guarantees provided to clients, thereby reducing the number of clients supported by the server. We also use the model to: (1) evaluate the effect of various system parameters (such as the number of clients, number of disks, etc.) on the stripe unit size, and (2) derive techniques for selecting an optimal stripe unit size for various design scenarios.

We then use the model to determine the optimal degree of striping for media streams. We demonstrate that striping a media stream across the entire array causes the number of clients supported to increase sub-linearly with increase in number of disks. To maximize the number of clients supported in large arrays, we propose a technique that partitions a disk array and stripes each media stream across a single partition. Since load imbalances can occur in such partitioned arrays, we present a model to compute the imbalance across partitions. We then use the model to determine a partition size that minimizes the load imbalance, and hence, maximizes the number of clients supported by the array.

The rest of this paper is organized as follows. In Section 2, we address the issue of determining an optimal stripe unit size. Section 3 describes techniques for determining the degree of striping. Section 4 describes related work, and finally, Section 5 summarizes our results.

2 Determining the Stripe Unit Size

Consider a multimedia server that interleaves media streams across disks by storing successive blocks of a stream on consecutive disks, and hence, maximizes the number of clients supported to increase sub-linearly with increase in number of disks. To determine a partition size that minimizes the load imbalance, and hence, maximizes the number of clients supported by the array.

Due to these differences, novel techniques that optimize the performance of a multimedia file server for continuous media data must be developed.
2. To minimize the frequency of such playback discontinuities, the server must minimize the service time of the most heavily loaded disk in the array. The service time of the most heavily loaded disk depends on the media block size. To observe this, consider a small media block size. Such a block size increases the number of blocks accessed from the array during a round, thereby distributing the load across disks and reducing the load imbalance. However, it also increases the overhead due to seek and rotational latency, thereby increasing the service time of the most heavily loaded disk. In contrast, a large block size reduces the overhead of seek and rotational latency, but increases the load imbalance, and hence, the service time of the most heavily loaded disk. The server must select a media block size that balances these tradeoffs and minimizes the service time of the most heavily loaded disk in the array.

In what follows, we present an analytical model that uses the characteristics of the workload and the configuration of the server to predict the service time of the most heavily loaded disk in redundant and non-redundant disk arrays. By computing the service time of the most heavily loaded disk over a range of block sizes, a media block size that minimizes the service time can be chosen.

2.1 An Analytical Model for Determining the Load on the Array

Consider a multimedia server that interleaves media streams across a disk array. Given the configuration of the server (e.g., number of disks, their physical characteristics, the round duration, etc.) and the client characteristics (e.g., number of clients, trace of the media unit sizes for each client, playback rate, etc.), the service time of the most heavily loaded disk in non-redundant and redundant disk arrays can be computed as follows:

1. Compute the distribution of the number of blocks accessed from a disk by each client during a round using a trace of media unit sizes.

2. Compute the distribution of the total number of blocks accessed from a disk by summing the number of blocks requested by each client from that disk.

3. Compute the distribution of the number of blocks accessed from the most heavily loaded disk.

4. Given the distribution of the number of blocks accessed from the most heavily loaded disk, compute the service time distribution for the disk using a disk model.

To derive the model for non-redundant arrays, consider a server that interleaves media streams across an array of D disks. Let n clients access the server, each retrieving a media stream, and let B denote the media block size. Since the server accesses a fixed number of media units for each client during a round, the distribution of the number of blocks accessed by the client during a round can be determined from a trace of the media unit sizes. Let b_i^k.

is stored on disk. p

will access exactly one block from disk i

obtained from this distribution, denote the probability that client i

blocks accessed by client

i

blocks accessed by clients from the array are independent

Due to the VBR nature of video streams, the number of

blocks accessed by client

i

blocks accessed from the most heavily

Then, the number of blocks accessed from the most heavily

disk, the service time of the disk can then be computed by using a disk

model. We use one such model that has been proposed

in the literature [14, 20] (see [19] for the complete disk model). The service time to access

max

blocks of size B as predicted by the disk model is:

F

max

(x) = F

x

(x) · F

x

(x) · · · F

x

(x) (8)

where

F

x

is the cumulative probability distribution function

of the random variable

X

[16].

Having determined the distribution of the number of

blocks accessed from the most heavily loaded disk, the

characteristics of the traces

The analytical model for redundant arrays assumes a

RAID architecture [6, 17], in which fault-tolerance is achieved by maintaining error correcting codes (referred to as parity) on disks in the array. Our model can predict the service time of the most heavily loaded disk, both in the presence and absence of disk failures. The model is similar to that for non-redundant arrays, expect that it must take the presence of parity blocks in account while computing the service time of the most heavily loaded disk. Due to lack of space, we omit the presentation of the model. A detailed description of the model can be found in [19].

To validate the model, we have built an event-based,

trace-driven disk array simulator called DiskSim. We

digitized a number of traces and used these traces to run simu-
lations over a wide range of system parameters (e.g., differ-

ten number of clients, different number of disks, different

eround durations, etc.). The characteristics of the traces

The source code for DiskSim is publicly available from

are listed in Table 1. For each combination of parameters, we conducted multiple simulation runs and computed the 95% confidence intervals of the expected number of blocks accessed and the expected service time of the most heavily loaded disk. We also computed the expected number of blocks accessed and the expected service time of the most heavily loaded disk using the model for each workload. The values predicted by the model were found to be within the 95% confidence intervals obtained from simulations. Figures 3(a) and (b) plot these values for one such workload. Thus, the simulation results validate the predictions made by the analytical model over a large parameter space.

The service time graphs of the average loaded disk and the most heavily loaded disk in Figure 3 lead us to the following observations:

- As shown in Figure 3(a), the service time of the average loaded disk decreases monotonically with increasing block size. This is because increasing the block size decreases the number of blocks accessed from the disk, thereby reducing disk seek and rotational latency overheads.

- The service time of the most heavily loaded disk, on the other hand, decreases initially and then starts increasing with increase in block size (see Figure 3(b)). To explain this behavior, let us first introduce some terminology. Let \(\hat{N}_{\text{max}} \) and \(\hat{t}_{\text{max}} \), respectively, denote the expected number of blocks accessed from the most heavily loaded disk and the expected service time of the most heavily loaded disk during a round, and let \(\hat{t}_{\text{avg}} \) denote the expected service time of the average loaded disk. Then, the imbalance in the service times of the most heavily loaded disk and the average loaded disk \(I_s \) (referred to as the load imbalance) is defined as

\[
I_s = \frac{\hat{t}_{\text{max}} - \hat{t}_{\text{avg}}}{\hat{t}_{\text{max}}} = 1 - \frac{\hat{t}_{\text{avg}}}{\hat{t}_{\text{max}}} \tag{10}
\]

From (9), the portion of the service time spent in disk seek and rotational latency is

\[
\hat{\tau}_{\text{seek}} = \hat{N}_{\text{max}} \cdot (t_s + t_r) = \hat{N}_{\text{max}} \cdot B \cdot t_s.
\]

Hence, the overhead due to seek and rotational latency \(O \) can be defined as:

\[
O = \frac{\hat{\tau}_{\text{max}} - \hat{\tau}_{\text{avg}}}{\hat{\tau}_{\text{max}}} = 1 - \frac{\hat{\tau}_{\text{avg}}}{\hat{\tau}_{\text{max}}} \tag{11}
\]

Assuming a fixed server configuration and workload characteristics, increasing the block size decreases the number of blocks accesssed from the array. The smaller the number of blocks being accessed, the smaller is the probability of achieving equitable distribution of load across disks (since the array becomes sparsely loaded). Hence, increasing block size yields an increase in the load imbalance \(I_s \). On the other hand, increasing the block size causes the seek and rotational latency overhead to decrease. Figure 4 shows these variations in \(I_s \) and \(O \).

For each media block size, the service time of the most heavily loaded disk is governed by the relative values of \(I_s \) and \(O \). As shown in Figure 4, at small block sizes, the latency overhead dominates, and hence the service time decreases with increase in block size. At large block sizes, the load imbalance dominates the latency overhead, and causes the service time to increase with increase in block size. Consequently, the service time of the most heavily loaded disk decreases initially and then starts increasing with increase in block size.

From the above analysis, we conclude that minimizing the service time of the average loaded disk requires the server to choose a block size that is as large as possible. In contrast, minimizing the service time of the most heavily loaded disk requires the server to choose a block size that minimizes the combined effects of \(I_s \) and \(O \). To maximize the number of clients supported for best-effort workloads, the server must minimize the service time of the average loaded disk, while for continuous media workloads, minimizing the service time of the most heavily loaded disk is more desirable. Hence, the optimal block size obtained for the two environments can differ significantly.

The precise value of the optimal block size for a continuous media workload depends on the quality of service requirements of clients and the values of various system parameters (such as the number of clients, their playback rate, the number of disks, etc.). In what follows, we examine the effect of these factors on the optimal block size. For each parameter, we also compute the range of block sizes that yields a service time within \(x\% \) of the minimum. The upper and lower bounds of this set of block sizes define the \(x\% \) optimal envelope for the workload [3, 20]. By choosing a block size that is contained within the \(x\% \) optimal envelope of all values of the parameter, the server can ensure performance that is within \(x\% \) of the optimal regardless of the workload.

2.2 Factors Affecting the Optimal Block Size

2.2.1 Effect of Quality of Service

Observe that, the model yields a distribution of the service time of the most heavily loaded disk in the array. To determine the optimal block size, the server must first choose a particular percentile of the service time as the metric and

<table>
<thead>
<tr>
<th>Media</th>
<th>Encoding Pattern</th>
<th>Length (frames)</th>
<th>Bit rate (Mb/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPEG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frasier</td>
<td>T[BBP]^B B</td>
<td>5960</td>
<td>1.49</td>
</tr>
<tr>
<td>Newscast</td>
<td>T[BBP]^B B</td>
<td>9000</td>
<td>2.33</td>
</tr>
<tr>
<td>Flintstones</td>
<td>T[BBP]^B B</td>
<td>9000</td>
<td>1.67</td>
</tr>
</tbody>
</table>

Table 1: Characteristics of Video Traces
then compute the block size that minimizes that percentile. For instance, the server can choose the the expected value of the service time (which approximately corresponds to the 70th percentile of the service time distribution, as indicated by our experiments) to determine the block size. In such a scenario, there is a 30% chance that the actual value of the service time during a round will exceed its expected value. If clients have stringent quality of service (QoS) requirements (i.e., they can tolerate only rare discontinuities in playback), then the server must choose higher percentiles of the service time to provide the desired performance guarantees. For example, by choosing the 95th percentile of service time distribution of the most heavily loaded disk, the server can ensure that the service time does not exceed its estimated value in more than 5% of the rounds. Since different percentiles of the service time yield different optimal block sizes (see Figure 5(a)), the server must carefully choose an appropriate percentile of the service time as the metric based on the QoS requirements of clients.

Figure 5(b) shows the variation in optimal block size and the 5% optimal envelope for different percentiles of the service time. Larger percentiles of the service time correspond to more stringent QoS requirements. To provide stringent QoS, the server must minimize the variation in service times of the most heavily loaded disk across rounds. This can be achieved by selecting a block size which reduces the load imbalance. Since the load imbalance decreases with decrease in the block size (Figure 4), a small block size yields better performance for more stringent QoS requirements. Hence, the optimal block size and the 5% optimal envelope decrease with increase in percentile of the service time.

Observe from Figure 5(a) that, the service time of the most heavily loaded disk increases slowly for block sizes larger than the optimal block size. This might lead us to believe that choosing a block size that is larger than the optimal will yield near optimal performance, while reducing disk latency overheads. However, Figure 5(b) demonstrates that choosing the largest possible block size contained in the optimal envelope for a particular QoS degrades performance for more stringent QoS. For instance, choosing the upper 5% optimal envelope of the 70th percentile (i.e., 256KB) as the block size will cause a loss in performance for the 95th percentile (since 256KB is not contained in the 5% optimal envelope of the 95th percentile). This argument also shows that ad-hoc techniques that select a large block size (e.g., selecting the track size as the block size) can significantly affect the server performance, and hence, the number of clients supported. To achieve good performance over a range of QoS requirements, a block size that is contained within the x% optimal envelope of a wide range of percentiles must be chosen.

2.2.2 Effect of system parameters

The model can also be used to study the effect of various system parameters on the optimal block size. Since the service time of the most heavily loaded disk is minimized when the combined effects of I_s and O are minimized, the effect of varying a system parameter on the optimal block size can be analyzed by studying its effect on I_s and O. We can intuitively understand the effect of a parameter on the optimal block size by assuming that the point of intersection of I_s and O corresponds to the minima of the service time curve. Then, if a change in the value of the system parameter increases the number of blocks accessed from the array, it increases the probability of achieving equitable load distribution across disks, and hence, reduces I_s. Such a reduction causes the I_s curve to shift downward. This shifts the point of intersection of I_s and O (and hence, the minima of the service time curve) to the right, thereby increasing the optimal block size. On the other hand, if a

![Figure 3](image1.png)

Figure 3: Variation in the service time of the average loaded disk and the most heavily loaded disk.

![Figure 4](image2.png)

Figure 4: Variation in the load imbalance and the latency overhead.
change in the value of the parameter causes a decrease in the number of blocks per disk, then the load imbalance increases. Such an increase causes the point of intersection of the I_s and O curves to shift to the left, thereby reducing the optimal block size. To illustrate, consider the effect of variation in the number of clients on the optimal block size. For a fixed server configuration, increase in the number of clients increases the number of blocks accessed from the disk array, and thereby increases the probability of achieving equitable distribution of load across disks. This reduces the load imbalance I_s, causing the I_s curve to shift downwards. In contrast, the latency overhead curve, which is governed mostly by the physical characteristics of disks, shifts only marginally. This shifts the point of intersection of I_s and O curves to the right (see Figure 6(a)). Hence, the optimal media block size increases with increase in the number of clients accessing the server (see Figure 6(b)). The 5% optimal envelope also increases with increase in number of clients for similar reasons. Next, consider the effect of an increase in the number of disks on the optimal block size. For a fixed number of clients, increasing the number of disks in the system decreases the number of blocks accessed per disk. This decreases the probability of achieving equitable distribution of load across disks, and hence, increases the load imbalance I_s. An increase in I_s causes the I_s curve to shift upwards and the point of intersection of I_s and O to shift to the left. Thus, the optimal block size decreases with an increase in the number of disks.

We have determined the effect of various system parameters, such as the number of disks, their physical characteristics, the playback rate of clients, the round duration, etc., on the optimal block size. The effect of all of these parameters on the optimal block size can be explained using arguments similar to those presented above.\(^\text{6}\) Due to space limitations, we present only a summary of our results in Table 2 and refer the reader to [19] for details.

\(^\text{6}\)Similar trends have been observed for conventional disk arrays [3]. However, the actual values of the stripe unit sizes obtained for the two environments are different.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
Parameter & Effect of increase in parameter on optimal block size \\
\hline
Number of clients & Block size increases \\
Playback rate & Block size increases \\
Quality of Service (QoS) & Block size decreases \\
Number of disks & Block size decreases \\
Round duration & Block size increases \\
Disk zones & Block size increases from inner zones to outer zones \\
Parity Group Size & Block size increases \\
\hline
\end{tabular}
\caption{Effect of various parameters on the block size}
\end{table}

2.3 Selecting an Optimal Block Size

Having examined the effect of the server configuration and the workload characteristics on the block size, we now present procedures for selecting an optimal block size. The procedure for selecting an optimal block size depends on the design goals for the multimedia server, which in turn are dictated by the operating environment. To illustrate, for multimedia servers offering commercial services (e.g., video-on-demand, online news, etc.), the primary goal is to maximize revenue by maximizing the number of clients that can be supported by the server. In contrast, for multimedia servers which service clients with heterogeneous QoS, the number of clients that can be supported depends on the exact workload mix (i.e., the proportion of clients with different requirements). Since the workload mix can vary over time, the goal for such servers is to provide the best possible performance over a wide range of workloads. Differing design goals may require the system designer to choose completely different media block sizes.

To determine a block size that maximizes the number of clients supported, let us assume that all parameters determining the server configuration (i.e., the number of disks, their physical characteristics, the round duration, etc.) are known at design time. Also, assume that the data rate of clients and their QoS requirements are known. Then, a block size that maximizes the number of clients supported
For a given number of clients, can be computed by the following two step procedure: (1) Determine the optimal block size and the parameter is likely to vary must first be estimated. The parameter that is unknown at design time, the range over which the range of workloads must be chosen [3]. For every parameter that is unknown at design time (e.g., the heterogeneous nature of the workload, some of the workload characteristics may be unknown at design time (e.g., the number of clients accessing the server). In such a scenario, a block size that yields good performance over a wide range of workloads must be chosen [3]. For every parameter that is unknown at design time, the range over which the parameter is likely to vary must first be estimated. The optimal block size and the x% optimal envelope for each combination of these parameters is then computed using the model. Let S_1, S_2, \ldots denote sets, each containing the x% optimal envelope for a particular combination of these parameters. Then, the set of block sizes that yields service times within ±x% of the minimum over all possible combinations of these parameters is $\mathcal{S} = S_1 \cap S_2 \cap \ldots$. If \mathcal{S} is empty, then the entire procedure must be repeated for a larger value of x until a non-empty set of block sizes is obtained. Figure 7 illustrates the process of computing a feasible solution (i.e., a non-empty set \mathcal{S}) over a range of client workloads.

3 Determining the Degree of Striping

In addition to determining the stripe unit size, defining a striping policy requires the determination of degree of striping. A multimedia server can either stripe a media stream across all disks in the array or across a subset of the disks. Whereas the former policy is referred to as wide striping, the latter policy is referred to as narrow striping.

To evaluate the relative merits of these policies, consider a multimedia server that employs wide striping to interleave media streams across disks in the array. Let us assume that the performance of the server is measured in terms of the maximum number of clients that it can support. In an ideal scenario, increase in the number of disks in the system should result in a linear increase in the number of clients that can be supported by the server. That is, the number of clients supported by a disk array consisting of D disks should be D times the number of clients that can be supported by a single disk. However, as shown in Figure 8(a), the number of clients supported by the server increases sub-linearly with increase in the number of disks. This can be attributed to the following two reasons:

- **Real-time requirements of clients**: Due to the real-time requirements of clients, the number of clients supported by the server is constrained by the most heavily loaded disk. Specifically, the number of clients accessing the server reaches its maximum value when the service time of the most heavily loaded disk equals the round duration. At this point, however, the service time of a disk with average load is smaller than the round duration. The resulting load imbalance causes most of the disks in the array to be under-utilized.
- **Reduction in optimal block size**: As explained in Section 2.2.2, an increase in the number of disks in the

![Figure 6](image)

Figure 6: Effect of number of clients on the optimal block size.

![Figure 7](image)

Figure 7: Selecting a block size that yields near-optimal performance, regardless of the number of clients accessing the server. The shaded region denotes the set of block sizes \mathcal{S} that yield service times within 7% of the minimum for all workloads.
system causes the load imbalance I_s to increase. An increase in the number of disks also increases the number of clients that can be supported by the server. Larger the number of clients accessing the server, the larger the load imbalance I_s. Thus, the combined effect of increasing the number of disks and the number of clients accessing the server governs the actual value of I_s. Figure 8(b) plots the variation in imbalance I_s against the (number of disks in the system, maximum number of clients supported) pairs. It illustrates that the increase in I_s due to an increase in the number of disks dominates the decrease in I_s due to an increase in the number of clients, causing the actual imbalance to increase. Hence, a small block size must be chosen to compensate for the increased imbalance, causing a decrease in the optimal block size (see Figure 8(c)). Since a small block size imposes a larger latency overhead, the overall throughput of the array decreases, causing a reduction in the number of clients that can be supported.

To minimize the impact of these factors, a server can: (1) partition the disk array into mutually exclusive groups of disks, and (2) stripe each media stream only within a partition. Since each partition acts as an independent disk array and the number of disks per partition is small, such an approach: (1) reduces the load imbalance within each partition, and (2) increases the optimal block size for a partition (and thereby reduces the latency overhead). In such partitioned arrays, load imbalances can occur if clients are not equitably distributed among all the partitions. Hence, the partition size must be chosen so as to simultaneously minimize the impact of load imbalance across partitions and the load imbalance within a partition. In what follows, we first present a model for determining the load imbalance across partitions, and then describe a procedure for determining the partition size that maximizes the number of clients supported.

3.1 Modeling the Imbalance Across Partitions

To compute the load imbalance across partitions, consider a disk array consisting of D disks that is partitioned into groups of d disks each. Let us assume that the server employs a placement policy that assigns streams to partitions such that each partition is equally likely to be accessed by a new request [8, 21]. That is, the probability that a newly arriving client accesses a partition is $q = \frac{d}{D}$. In such a scenario, if n clients access the server, then the probability that m clients access the j^{th} partition is binomially distributed, and is given as:

$$P(Y_j = m) = \binom{n}{m} \cdot q^m \cdot (1-q)^{n-m} \quad (12)$$

where Y_j is a random variable representing the number of clients accessing the j^{th} partition. Then the number of clients accessing the most heavily loaded partition is

$$Y_{\text{max}} = \max(Y_1, Y_2, \ldots, Y_D) \quad (13)$$

Since the load on a partition is independent of other partitions, Y_1, Y_2, \ldots, Y_D are independent random variables. Hence, the distribution of Y_{max} can be computed as:

$$F_{Y_{\text{max}}} (x) = F_{Y_1} (x) \cdot F_{Y_2} (x) \cdot \ldots \cdot F_{Y_D} (x) \quad (14)$$

where F_{Y_j} is the cumulative probability distribution function of the random variable Y_j [16].

Given the distribution of Y_j and Y_{max}, we can compute the expected number of requests on the average and the most heavily loaded partitions (denoted by \bar{y} and \bar{y}_{max}, respectively). Using these values, we can define the load imbalance across partitions (denoted by I_p) as:

$$I_p = \left(1 - \frac{\bar{y}}{\bar{y}_{\text{max}}} \right) \quad (15)$$

Thus, given the number of disks in the array and the partition size, we can compute the load imbalance across partitions.

3.2 Determining the Partition Size

For a fixed number of disks, increasing the partition size increases the load imbalance I_s within a partition (Figure 8(b)), while decreasing the load imbalance I_s across partitions (Figure 9). Moreover, as shown in Figure 8(c), increasing the partition size results in a reduction in the optimal block size (thereby increasing the seek and rotational latency overhead). Consequently, the server must determine the degree of striping (i.e., partition size) that balances these tradeoffs.

Given the models for predicting: (1) the load imbalance across partitions (Section 3.1), (2) the load imbalance within a partition (Section 2.1), a procedure for choosing a partition size that maximizes the number of clients supported by the server is as follows:

Procedure ComputePartitionSize

1. Choose an initial partition size of $d=1$.
2. Using the model presented in Section 2.1, compute the maximum number of clients, n', that can be supported by a single partition of size d (i.e., the number of clients at which the service time of the most heavily loaded disk equals the round duration).
3. Assuming that n clients access the array, using the model presented in Section 3.1, compute the expected number of clients, \bar{y}_{max}, accessing the most heavily loaded partition.
4. If $\bar{y}_{\text{max}} < n'$, then increment n and repeat step (3). When $\bar{y}_{\text{max}} = n'$, then n denotes the maximum number of clients that can be supported by the array with a partition size of d.
5. Increment the partition size d, and repeat steps (2) thorough (4) until no further improvements in the number of clients is obtained (i.e., until n starts decreasing with increase in d). This yields a partition size that maximizes the number of clients that can be supported.
In the above procedure, note that the limit on the number of clients that can be supported by the entire array is reached when the most heavily loaded partition reaches its maximum capacity. However, at this point, the number of clients accessing other partitions is less than their maximum capacity. Hence, the total number of clients that can be supported by the array does not increase linearly with number of partitions (i.e., \(n < n' \cdot \frac{D}{d} \)).

Figure 10(a) illustrates the result of executing this iterative procedure for an array of 120 disks. Since the number of clients that can be supported by the array is maximized at \(d = 10 \), the array should be partitioned into 12 partitions of 10 disks each for optimal performance. Figure 10(b) demonstrates the variation in the optimal partition size with increase in the number of disks in the array. Finally, Figure 10(c) illustrates the improvement in the number of clients supported due to partitioning. For small disk arrays, since wide striping is close to the ideal case, the additional gains due to partitioning are small. For large disk arrays, however, partitioning yields a approximately a 10% increase in the number of clients supported as compared to the wide striping. Figure 10(c) also demonstrates that partitioning coupled with static load balancing algorithms does not completely bridge the gap between the number of clients supported by the array in the ideal case (i.e., when the number of clients increases linearly with array size) and that obtained using wide striping. To further reduce the loss in the number of clients supported, the server must replicate streams across partitions and employ dynamic load balancing schemes. The improvement in performance yielded by such a scheme is at the expense of higher storage space requirement and more complex storage space management algorithms. Detailed cost-performance tradeoffs of such an approach is beyond the scope of this paper.

4 Related Work

Several research projects have developed simulation and analytical techniques for optimizing the performance of striped disk arrays for conventional workloads [3, 4, 5, 14]. As demonstrated in Section 1, due to the real-time nature of continuous media accesses, these techniques are not directly applicable for optimizing performance in multimedia servers.

The problem of determining the optimal stripe unit size for non-redundant arrays storing continuous media was studied in [20]. A model that predicts the service time of the most heavily loaded disk for non-redundant arrays (henceforth referred to as the VRG model) was also proposed in the paper. The VRG model uses worst case assumptions about the number of blocks accessed by a client during a round to compute the service time of the most heavily loaded disk. In contrast, our model uses actual distributions of the number of blocks accessed by a client during a round to compute the service time of the most heavily loaded disk. Due to worst-case assumptions, the service time predicted by the VRG model is higher than the actual service time of the most heavily loaded disk (see Figure 11(b)). Since the VRG model is conservative, as illustrated in 11(b), the optimal block size computed using the VRG model will cause the server to support a smaller number of clients. To derive this graph, we first computed the optimal block size using both models, and then determined the number of clients supported by the server using our model. If the VRG model were to be used to determine the number of clients supported by the server (in addition to using the model to compute the optimal block size), then the number of clients supported would be even lower. The problem of determining block size in redundant arrays or determining the degree of striping was not addressed in the paper.

The problem of determining the degree of striping has not received much attention in the literature. A comparison of wide and narrow striping schemes was presented in [10]. The focus of their effort was to evaluate the effect of replicating media streams across array partitions on the response time. The problem of determining the partition size was not addressed in the paper. The problem of assigning
media streams to array partitions subject so as to balance the load across partitions has been dealt in [8, 21]. These efforts complement our work since they do not deal with the issue of determining an optimal partition size for large disk arrays.

Many other striping related issues that are complementary to the problem addressed in this paper have been investigated. Striping techniques that minimize buffer requirements in continuous media servers have been proposed in [2, 7, 22]. Simulation studies of the cost-performance tradeoffs of striped continuous media servers were carried out in [2, 11]. These studies examine the tradeoffs of using different placement schemes in striped disk arrays. Striping in continuous media servers employing declustered parity arrays was investigated in [1]. A comparison of striping in RAID-3 and RAID-5 based continuous media servers was presented in [15]. The paper demonstrates that bit-interleaved RAID-3 arrays can cause a significant degradation in the number of clients supported as compared to block-interleaved RAID-5 arrays. A performance evaluation of striping techniques in an actual continuous media server based on RAID-3 arrays was presented in [13]. The paper investigates application level striping and disk driver level striping with respect to scalability and performance. The effect of fast-forward operations on the performance of striped continuous media servers was investigated in [9]. Finally, striping techniques for tertiary storage systems were analyzed in [12].

5 Concluding Remarks

In this paper, we have described techniques for determining the stripe unit size and the degree of striping for file servers storing continuous media data. To determine the optimal block size, we presented an analytical model that uses the server configuration and the workload characteristics to predict the load on the most heavily loaded disk in redundant and non-redundant arrays. We used the model to evaluate the effect of various parameters on the optimal block size. We also demonstrated that employing wide striping causes the number of clients supported to increase sub-linearly with increase in the number of disks. To maximize the number of clients supported in large arrays, we propose a scheme that partitions such arrays and stripes each media stream across a single disk partition. Since load imbalances can occur in partitioned arrays, we presented a model to determine the imbalance across partitions and described a procedure for determining a partition size that maximizes the number of clients supported by the array. The analytical models presented in this paper are the first to accurately characterize the load on the disk array for VBR streams. The only previously known model for VBR streams [20] uses worst case assumptions, and hence, yields sub-optimal results. Furthermore, our models can also be used by multimedia file servers to compute the number of clients that can be supported, which can then be used for admission control. The results of our study are being used to design and configure an integrated multimedia file server being built in our research laboratory.
Acknowledgments

We thank Pawan Goyal for having suggested the problem of determining the optimal degree of striping. We thank Mike Dahlin, Pawan Goyal, and Scott Page for their comments on earlier drafts of this paper.

References

