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Abstract—To prevent rejecting requests, cloud platforms typ-
ically provision for their peak demand. Thus, a platform’s
idle capacity can be significant, as demand varies widely over
multiple time scales, e.g., daily and seasonally. To reduce waste,
platforms have begun to offer this idle capacity in the form
of transient servers, which they may unilaterally revoke, for
much lower prices—∼50-90% less—than on-demand servers,
which they cannot revoke. However, transient servers’ revoca-
tion characteristics—their volatility and predictability—influence
their performance, since they affect the overhead of fault-
tolerance mechanisms applications use to handle revocations.
Unfortunately, current cloud platforms offer no guarantees on
revocation characteristics, which makes it difficult for users to
optimally configure (and correctly value) transient servers. To
address the problem, we propose the abstraction of a transient
guarantee, which offers probabilistic assurances on revocation
characteristics. Transient guarantees have numerous benefits:
they increase the performance of transient servers, enable users
to optimally use and correctly value them, and permit platforms
to control their freedom to revoke them. We present policies
for partitioning a variable amount of idle capacity into classes
with different transient guarantees to maximize performance
and value. We then implement and evaluate these policies on
job traces from a production Google cluster. We show that our
approach can increase the aggregate revenue from idle server
capacity by up to ∼6.5× compared to existing approaches.

I. INTRODUCTION

Cloud computing is growing rapidly with global spending
on Infrastructure-as-a-Service (IaaS) platforms estimated to
increase by nearly 33% in 2016 [1]. This growth has led
to intense competition between providers, such as Ama-
zon’s Elastic Compute Cloud (EC2), Google Compute Engine
(GCE), and Microsoft Azure, to aggressively expand their
infrastructure. The goal is to offer low prices and the illusion of
access to infinite computing resources on demand. Of course,
platforms do not have infinite capacity: if the demand for
servers exceeds the supply, they must reject user requests.
Since rejecting requests may turn away new users, platforms
provision conservatively for their expected peak demands.

Thus, a platform’s idle server capacity can be significant, as
the demand for cloud servers varies widely over multiple time
scales, including daily and seasonally. Importantly, any idle
capacity partially wastes the capital and operational expenses
providers incur to house, provision, maintain, power, and cool
the idle servers. To recoup some of these costs, providers
have begun to offer idle capacity in the form of transient
servers, which they may unilaterally revoke from users. Tran-
sient servers are typically much cheaper—∼50%-90% less on

average—than on-demand servers, which a platform cannot
revoke. Transient servers enable platforms to gain revenue
from their idle capacity, while retaining the flexibility to
reclaim servers to satisfy higher-priority requests, e.g., for
on-demand servers. Transient servers also benefit users by
reducing the cost to execute workloads that can handle server
revocations, and are tolerant to unexpected delays or perfor-
mance degradation. Since high-performance computing (HPC)
and scientific workloads are often delay-tolerant, and thus
particularly well-suited to exploit transient servers, providers
explicitly market them to these workloads [2], [3], [4], [5].
Similar to other financial investments, transient servers enable
HPC workloads to pay a lower price for resources in exchange
for a higher risk tolerance and less strict performance require-
ments. Note that transient servers also arise in private clusters
that support separate background and foreground tasks such
that background tasks are always revoked to make room for
new foreground tasks [6].

Since transient servers are a relatively new concept, there
are not yet widely accepted standards for setting their terms
and prices. EC2 offers its version of transient servers, called
spot instances, via a market mechanism. Users place a bid
for servers by specifying the maximum price they are willing
to pay per unit time. EC2 then provisions the servers if the
bid price is greater than the servers’ current spot price, which
is market-based and varies in real time. However, if the spot
price rises above the user’s bid price, EC2 revokes the servers.
In contrast, GCE charges a fixed price for transient servers,
called preemptible instances, such that it will always revoke
them within 24 hours. Importantly, EC2 and GCE currently
reserve the right to revoke transient servers at any time.

Our key insight is that transient servers’ revocation char-
acteristics influence their performance relative to on-demand
servers, since these characteristics affect the overhead of
the fault-tolerance mechanisms applications employ to handle
revocations. For example, consider a batch job that runs on a
transient server and periodically checkpoints its memory state
to a remote disk, such that after a revocation the job can restart
from its last checkpoint. Such periodic checkpointing incurs
an overhead that increases job running time and decreases
the perceived performance of a transient server relative to an
on-demand server that requires no checkpointing. In addition,
the optimal checkpointing interval that minimizes this fault-
tolerance overhead is a function of transient servers’ mean-
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time-to-revocation (MTTR) [7]. As a result, estimating an
MTTR that is too low or too high results in checkpointing too
much or too little, respectively, causing the job’s running time
to further increase due to either excessive checkpointing or
recomputation. Thus, inaccurate knowledge of the MTTR can
also decrease transient server performance by causing users to
misconfigure their checkpointing interval.

The example above highlights that knowing even probabilis-
tic information about a transient server’s revocation character-
istics can increase its performance by enabling users to op-
timally configure fault-tolerance mechanisms. Unfortunately,
the revocation characteristics for EC2 and GCE are unknown
and unbounded. In EC2, revocation characteristics derive from
real-time changes in the spot price, which are based on
instantaneous supply and demand.1 While EC2 provides three
months of price history, historical prices are not necessarily
an accurate predictor of future prices. In addition, as the
spot market matures it should increasingly follow the efficient
market hypothesis, which states that you cannot “beat the
market” by predicting future prices, as current prices reflect
all available information. In contrast, GCE provides users no
revocation information. Thus, users are unable to accurately
configure fault-tolerance mechanisms, such as the checkpoint-
ing interval, to maximize transient server performance.

Due to the lack of information, EC2 and GCE users are
also unable to accurately quantify transient server value. For
example, while a transient server may be 50% the price of
an on-demand server, its unknown revocation characteristics
may result in a 50% performance overhead due to fault-
tolerance. Thus, “cheaper” transient servers may actually offer
no normalized discount relative to on-demand servers.

To address the problem, we propose the abstraction of a
transient guarantee, which provides probabilistic assurances
on revocation characteristics. Our hypothesis is that transient
guarantees enable users to maximize and quantify the perfor-
mance and value of transient servers, while enabling platforms
to control the freedom to revoke them for higher-priority tasks.
Since transient guarantees increase transient server value (by
increasing their performance), platforms can employ them to
either increase their revenue (by increasing prices to reflect
value) or increase their discounts to users (by maintaining
current prices and offering higher performance). In evaluating
our hypothesis, we make the following contributions.

Transient Server Characterization. We characterize the per-
formance and value of applications using transient servers
after accounting for the overhead of fault-tolerance. In doing
so, we highlight three key metrics—availability, volatility, and
predictability—that affect application performance on transient
servers, and evaluate how these general characteristics impact
perceived performance (modulo revocation-related overheads).
Transient Guarantees. We define the transient guarantee
abstraction, which provides probabilistic assurances of re-

1Note that, while data analysis initially indicated that EC2 spot prices may
not be supply-demand driven, follow-on work has shown that prices have been
characteristic of a true market since October 2011 [8].

vocation characteristics. We show how transient guarantees
benefit users by enabling them to quantify transient server
performance and value relative to on-demand servers. We
then show how they benefit platforms by designing policies
that partition idle capacity into multiple classes with different
transient guarantees to maximize aggregate performance.
Implementation and Evaluation. Finally, we implement our
policies, and evaluate them using job traces from a production
Google cluster. We show that partitioning idle capacity into as
few as four classes with different strength transient guarantees
increases its aggregate revenue by up to ∼6.5× compared to
using EC2 spot instances or GCE preemptible instances.

II. BACKGROUND

Our work assumes a cloud platform that sells a fixed capac-
ity of virtual machines (VMs) to users under multiple contracts
that offer different levels of risk and cost. The most common
contract is for on-demand servers, which users may request
at any time and, once allocated, a platform cannot unilaterally
revoke. Note that on-demand servers are not guaranteed to be
available: platforms may occasionally reject requests for on-
demand servers due to a lack of resources [9]. Importantly, on-
demand servers restrict a platform’s control over its resources,
as only users can decide how long they hold on-demand
servers and when they release them. As a result, allocating too
many on-demand servers may prevent a platform from satis-
fying requests for reserved servers, which, unlike on-demand
servers, it guarantees are always available upon request. Cloud
platforms allocate reserved servers because many users do
not want to risk that on-demand servers will not be available
at a critical business time, e.g., during an unexpected surge
in demand. To support reservations, platforms have only two
options: either keep physical resources idle or maintain a pool
of resources they can reclaim to satisfy reserved requests. Of
course, keeping physical servers idle is highly inefficient, as it
wastes their computational resources, as well as the capital and
operational expenses incurred to provide them. Thus, transient
servers exist both to reduce this waste by enabling platforms
to earn revenue from their idle capacity, and also to provide a
pool of revocable resources to support reservations.

A. Transient Server Characteristics

The price of on-demand, reserved, and transient servers
reflect their different levels of risk. Transient servers in EC2
and GCE are significantly cheaper because they entail an
unbounded risk of revocation, as EC2 and GCE may revoke
them at any time. Handling revocations not only introduces
additional application complexity, but also additional per-
formance overheads, which decrease transient server perfor-
mance. While applications can reduce this overhead, given
sufficient knowledge of revocation characteristics, they cannot
eliminate it. Thus, transient server performance is strictly less
than on-demand (or reserved) performance. We distill the
revocation characteristics that influence performance into three
independent metrics: availability, volatility, and predictability.
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Fig. 1: Availability, volatility, and predictability are three distinct metrics that affect transient server performance.

Below, we discuss these metrics in the context of EC2, as GCE
releases no information on, and provides no control over, them.
• Availability is the percentage of time a transient server

is available—in EC2, this translates to the percentage of
time the spot price is below a user’s bid price.

• Volatility is the frequency of transient server
revocations—in EC2, this translates to the frequency at
which the spot price rises above the user’s bid price.

• Predictability captures the stationarity in the distribution
of revocations over time—in EC2, predictability is a
measure of the stationarity in the spot price time-series,
i.e., the frequency at which its mean and variance change.

Figure 1 illustrates, in the context of our simple batch job
from Section I, that these three metrics are distinct from, and
independent of, each other. Figure 1(a) shows a time-series
of transient server availability that is not volatile and highly
predictable. In this case, there is only a single revocation at
a well-known time. As a result, the application need only
checkpoint immediately before the revocation occurs, thereby
minimizing its overhead (in green) and maximizing the useful
work it performs (in grey). In contrast, Figure 1(b) shows
a similar time-series with the same availability over time,
but with a higher volatility that includes many revocations.
In this scenario, the application incurs more overhead (in
green) than before because it needs to checkpoint much more
frequently. However, since the time of each revocation remains
well-known and predictable, it still need only checkpoint
immediately prior to each revocation. Finally, Figure 1(c)
shows a time-series again with the same availability, but with
a high volatility and low predictability. Here, the application
incurs a higher checkpointing overhead (in green), since it
does not know precisely when revocations will occur, and must
instead periodically checkpoint at a fixed interval. In this case,
the application also incurs some recomputation overhead (in
red) when it loses work after an unexpected revocation.

Our simple example illustrates that volatility and pre-
dictability affect transient server overhead and performance
much more than availability. Despite this, prior work focuses
largely on optimizing availability in EC2—by determining
the bid that minimizes cost, while allowing an application to
satisfy a performance target, e.g., a deadline [10], [11], [12],

[13] or specified availability [14]. However, we contend that
there is no reason to ever wait for a particular transient server
to become available, since cloud platforms are large enough
that resources are effectively always available somewhere (at
some price). For example, EC2 operates ∼2500 spot markets
(one for each server configuration and type in each availability
zone of each region), each with its own dynamic spot price,
with nearly 1000 spot markets in the U.S. East region alone.
GCE offers preemptible instances on a similar scale. Thus,
applications can always immediately resume execution from
saved state on the lowest-cost available server. The only reason
for an application to wait is if it decides the price of a
platform’s lowest-cost server is too high.

Recent work has recognized that resources are nearly always
available in the cloud, and focuses on continuously migrat-
ing to the lowest-cost resources [15], [16], [17], [18], [19].
This work exploits the increasing maturity and popularity of
resource containers [20] and nested virtual machines [21],
which provide systems-level checkpointing and migration for
applications. As a result, volatility and predictability—and not
availability—are the critical metrics that affect transient server
overhead and performance. Prior work likely does not focus on
these metrics because EC2’s current spot market is predictable
and not volatile—prices generally remain low and stable for
long periods. However, as more users exploit the spot market’s
arbitrage opportunities (by using spot instances when the spot
price is low, and migrating to on-demand instances when it
rises), spot prices will not only rise, but also become more
volatile and less predictable. This will ultimately decrease the
performance and value of using spot instances [22].

There are indications this is already happening, as multiple
startup companies are now working aggressively to exploit the
spot market’s arbitrage opportunities [23], [24]. These compa-
nies automate the process of optimally selecting spot instances
that balance low cost with low risk, and reconfiguring applica-
tions on revocation, e.g., by selecting and spawning new spot
instances elsewhere. As an example of the potential effects
of large-scale exploitation of these optimizations, Figure 2
shows spot prices for the c4-large and cg1-4xlarge
over two months in one availability zone of the U.S. East
region. We expect that the c4-large is a much higher volume
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Fig. 2: Spot prices in mature markets (a) are more volatile and
less predictable than spot prices in immature markets (b).

and mature market than the cg1-4xlarge market, since the c4-
large is a current generation compute-oriented server, while
the cg1-4xlarge is a more exotic GPU-oriented server that
is deprecated. The graphs show that prices for the more
mature c4-large market are significantly more volatile and
unpredictable, and often rise above the on-demand price (the
red dot represents the on-demand price for each server).

While prior work uses exponential and Pareto distributions
to accurately model the probability the spot price equals a
particular value in select markets [10], these models are only
useful in predicting availability at a given bid price: they do
not model or predict when and how often revocations occur.
Our analysis indicates that the distribution of inter-arrival times
for revocations (at each bid level) varies widely across EC2’s
∼2500 markets, and is much harder (or impossible) to capture
using a single one-size-fits-all model.

B. Quantifying the Performance Impact

We quantify the performance impact of revocation charac-
teristics for HPC-oriented batch applications that use check-
pointing to handle server revocations. We focus on batch appli-
cations, since these are commonly run on transient servers [2],
[3], [4]. We discuss other types of applications in Section VI.
In addition, we assume these applications have non-trivial
memory footprints that prevent dynamically checkpointing
memory state after a platform notifies a server of impending
revocation, but before server termination. Current revocation
warnings for transient servers range from thirty seconds (on
GCE) to two minutes (on EC2), which prevents such dynamic
checkpointing once memory footprints exceed 1GB to 4GB,
respectively. Note that the current trend is towards shorter
revocation warning times, as platform’s are placing a higher
priority on short re-provisioning and booting times [25].
Platform’s revoke transient servers to reallocate them to satisfy
other higher-priority requests, e.g., for on-demand and re-
served instances. As a result the re-provisioning and boot times
for on-demand and reserved instances must be greater than
the warning time. Thus, platform’s cannot arbitrarily increase
their warning time to accommodate the dynamic migration of
applications after a warning without increasing the boot times
for high-priority on-demand and reserved instances.

Thus, applications with non-trivial memory footprints must
employ checkpointing to ensure forward progress and prevent
restarting from the beginning after each revocation. Based on

prior work [7], [26], the optimal checkpointing interval that
minimizes application running time when accounting for the
overhead of recomputation and checkpointing is below.

topt ∼
√
2 ∗ δ ∗MTTR (1)

Here, δ is the time to write each checkpoint and MTTR
is the mean-time-to-revocation (assuming that the inter-arrival
time of revocations is exponentially distributed). Thus, every
topt interval, the application must pause and spend δ time
writing a checkpoint of its memory state to a remote disk.

Figure 3 then shows how the performance of transient
servers (as a fraction of on-demand server performance) varies
based on availability, volatility, and predictability. Here we
model the transient server revocations as following a Poisson
process with a specified MTTR over a two week period.
We then simulate running a batch job on a transient server
with a 16GB memory footprint, which incurs a checkpointing
overhead of ∼10 minutes on EC2 using an EBS magnetic disk.
We consider 16GB a medium-sized memory footprint, as we
assume the use of systems-level mechanisms that checkpoint
the memory of an entire server. Currently, 28 of the 40 instance
types offered by EC2 have >=16GB memory. Of course,
a larger memory footprint would increase the checkpointing
overhead resulting in a larger δ. In this example, since we use
system-level checkpointing of the entire memory footprint, we
also assume that applications are well-matched to the transient
server’s memory size. If an application uses significantly less
memory than a transient server offers, it should acquire a
smaller (and cheaper) server. In addition, each revocation in
EC2 would also incur an additional two minute overhead to
acquire and boot a replacement server. As before, we show
the useful server-time in grey, the checkpointing overhead in
green, and the recomputation overhead in red.

Figure 3(a) shows that, as expected, the percentage of time
a transient server is available is linearly related to its rate of
computation: if the server is only available 50% of the time,
its rate of computation is at most 50% that of an on-demand
server. However, as we discuss, the availability of any single
transient server is not an important metric, as cloud platforms
are large enough that servers of some type are nearly always
available. In contrast, Figure 3(b) demonstrates the impact
of volatility on performance over a range of MTTRs. As in
Figure 1(b), this figure assumes revocation times are entirely
predictable, and thus represents the minimum overhead of
transience at each MTTR. As the figure shows, transient server
performance is 35%-70% less than an on-demand server with
MTTRs of 0.25-1 hour even for a modest-sized 16GB server.

Finally, Figure 3(c) shows the impact of unpredictability on
performance. Here, we fix the MTTR at four hours, but assume
the precise revocation times are not known. We then plot the
overhead due to checkpointing and recomputation for different
estimates of the unknown MTTR. As the figure shows, even
with a correct MTTR, the overhead increases by more than 6×
compared to Figure 3(b) where the revocation times are known
(from ∼4% overhead in (b) to ∼27% overhead in (c)). Thus,
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Fig. 3: Impact on transient server performance when (a) varying availability, (b) varying volatility at a given level of availability,
and (c) varying predictability at a given level of availability and volatility.

unexpected server revocations can incur substantial overhead.
The figure also shows that inaccurate MTTR estimates further
increase this overhead. Note that GCE releases no information
on MTTR to guide users, while EC2’s price history (which
indirectly reveals historical MTTRs at different bid levels)
does not necessarily guarantee future performance.

III. TRANSIENT GUARANTEES

A transient guarantee is the simple idea of providing users
a probabilistic assurance on a transient server’s availability,
volatility, and predictability. While many variants of transient
guarantee are possible, we propose a variant that provides
a probabilistic guarantee by specifying a transient server’s
MTTR. Providing a probabilistic guarantee on the MTTR has
the advantage of not imposing strict limits on a platform’s
freedom to revoke servers, as the MTTR need only converge
to a particular value across many user requests. We define
transient guarantees with respect to the MTTR because the
overhead of fault-tolerance mechanisms, including the optimal
checkpointing interval from Section II-B, is typically defined
with respect to an MTTF (or MTTR in this case).

Of course, we could define much stronger transient guar-
antees to enable even higher performance. For example, EC2
introduced spot block instances in October 2015, which guar-
antee access to a transient server for a fixed block of time
between 1 and 6 hours. Thus, EC2 promises a spot block
instance will be revoked with 100% probability at the end
of each block but not before. While spot (and preemptible)
instances are 50-90% cheaper (in an absolute sense) than
on-demand servers, spot blocks are typically only 30-45%
cheaper [27]. Based on our analysis in Figure 1(a), since
spot block revocations are predictable, they require less fault-
tolerance overhead (and have higher performance) than spot
instances, as applications need to checkpoint only once, im-
mediately prior to the revocation. However, spot blocks also
impose greater restrictions on a platform’s freedom to revoke.

In effect, the more accurately a platform can predict the
future supply of its idle capacity, the stronger the transient
guarantees it can offer users. For example, if EC2 could
perfectly predict the precise times of all future requests for on-
demand and reserved servers (and when users would release
them), it could simply offer spot block instances to exactly

Volatility Predictability Pricing
GCE Preemptible Unknown None Fixed

EC2 Spot Unbounded Weak Market-based
Transient Guarantees Probabilistic Probabilistic Fixed

TABLE I: Approaches to selling idle cloud capacity.

fill any idle time. As mentioned, these spot block instances
are much more valuable (and cost more) than current spot in-
stances. Of course, platforms are likely not able to predict their
future demand with such precision. As a result, EC2 typically
offers only a small number of spot block instances (for short
time windows), likely when they are near 100% certain they
will not need to revoke them within the window. However,
we expect platforms are better able to forecast the statistical
attributes of their future demand, e.g., its distribution, mean,
and variance. For example, recent work develops prediction
techniques to accurately forecast the percentage of idle server
capacity, i.e., not allocated to on-demand or reserved servers,
over multi-month periods for multiple production Google
clusters [28]. Transient guarantees assume that platforms can
accurately estimate the MTTR of transient servers based on the
distribution of demand for on-demand (and reserved) servers.

We envision platforms offering transient servers with tran-
sient guarantees for a fixed price, similar to GCE’s model for
preemptible instances. Note that platform’s could also offer
servers with transient guarantees for a variable spot price.
However, fixed pricing is simpler for users to budget than
EC2’s variable priced bidding model because users know the
actual price in advance (and not just the maximum possible
price). Since EC2 charges users based on the variable spot
price, and not their bid price, users do not know the cost of
transient servers a priori. Fixed pricing also makes decision-
making for users much simpler, as they do not have to monitor,
analyze, and predict prices across thousands of markets to
select an optimal market and determine an optimal bid.

Table I summarizes the differences between our MTTR-
based transient guarantees, GCE preemptible, and EC2 spot
instances in terms of their volatility, predictability, and pricing.

A. Quantifying Transient Server Value

An advantage of transient guarantees is that they enable
users to quantify transient server value. We define a transient



server’s maximum value in relation to its amortized perfor-
mance compared to on-demand servers after accounting for
the overhead of revocations, e.g., checkpointing, migration,
and recomputation. That is, if a transient server with high
volatility and low predictability incurs a 25% overhead for
checkpointing, migration, and recomputation, then we say its
value is 25% less than an equivalent on-demand server. Since
platforms generally list a fixed price per unit time for on-
demand servers, we can also assign a dollar amount to a
transient server’s maximum value. In this case, if an on-
demand server costs $0.10 per hour, then the transient server’s
maximum value would be 25% less or $0.075 per hour.

We call this the transient server’s equilibrium price: where
the price per unit of useful time (modulo overhead) between
a transient server and an on-demand server is equal. Even
though the equilibrium price is necessarily less than the on-
demand price, rational users should never pay more than it for
a transient server, as it provides no discount. Similarly, rational
users should compute the discount offered by transient servers
in relation to their equilibrium price and not the absolute
price of on-demand servers. For example, if the transient sever
above costs $0.05 per hour, its discount per unit of useful time
compared to an on-demand server is only 33%, and not 50%.

Based on our analysis, we can derive the equilibrium price
for a batch application in terms of its volatility, checkpointing
overhead, and the price of an equivalent on-demand server.
The expected completion time E[Tj ] for an application j with
running time Tj on a transient server is below.

E[Tj ] = Tj +
Tj
topt

δ +
Tj

MTTR
∗ topt

2
(2)

Here, the first term is the application’s actual running time,
the second term is the additional overhead from checkpoint-
ing (at the optimal frequency), which incurs δ overhead at
every checkpoint interval, and the last term is the expected
recomputation overhead across all revocations (assuming the
probability of revocation at any time during each interval is
equal). Recall that we assume δ is a function of the transient
server (and not the application), since we assume application’s
are well-matched to the transient server’s size and use systems-
level checkpointing of the entire memory footprint. Based on
this analysis, a transient server has a performance that is Tj

E[Tj ]

that of an on-demand server. Thus, if an equivalent on-demand
server costs po, then the transient server’s equilibrium price is:

pe = po ∗
Tj

E[Tj ]
(3)

Note that platforms should offer transient servers for a dis-
counted price that is strictly less than their equilibrium price,
as the equilibrium price reflects the point at which transient
servers offer no savings relative to on-demand servers. The
magnitude of the discount represents the size of the arbitrage
opportunity that exists for using transient servers.
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B. Maximizing Transient Server Value

Current platforms not only provide no guarantees on revo-
cation characteristics, they also offer only a single class of
transient servers. Transient guarantees permit platforms to de-
fine multiple service classes with different strength guarantees.
Offering multiple service classes has two advantages.
• Multiple Choices. It offers users multiple choices at

different price and performance/risk levels. For example,
important, but non-critical, applications might be willing
to tolerate a few interruptions, e.g., with a high MTTR, in
return for a slightly lower price compared to on-demand
servers. However, less important background tasks may
be willing to tolerate more frequent interruptions, e.g.,
with a low MTTR, in return for a much lower price.

• Accurate Revocation Characteristics. It also enables
platforms to reduce the aggregate overhead incurred by
transient servers (and increase their aggregate value) by
more accurately specifying the revocation characteristics
in each class, enabling users to better tune fault-tolerance
mechanisms for servers in each specific class.

To illustrate, consider Figure 4, which depicts the idle
capacity over time after servicing on-demand requests for a
platform with a total capacity of N servers. This idle capacity
can be offered as a single class of transient servers with
MTTRavg based on the average revocation characteristics
across all idle servers. However, notice that if we allocate
on-demand requests with servers 0 to N in order, higher
ranked servers experience fewer revocations than lower ranked
servers. Thus, a platform could carve out the top N th server to
be allocated and offer it as a separate class with MTTRN �
MTTRavg . Since the N th server’s MTTR is much longer
than the average, it is more valuable to applications: it ex-
periences fewer revocations, incurs less overhead, exhibits
higher performance, and has a higher equilibrium price. In
contrast, offering the N th server as part of a single class
with MTTRavg significantly undersells its true value, since its
actual revocation characteristics are much better than average.

In the extreme, to maximize aggregate transient server
performance and value, platforms would offer each individual
server as a separate class with a unique MTTR that precisely
captures its revocation characteristics. As per Equation 1, this



minimizes the fault-tolerance overhead incurred by each tran-
sient server, thereby maximizing the performance and value
of the entire transient server pool. Of course, this extreme is
not feasible, as it would result in thousands of classes, each
composed of a single server. However, offering only a single
class reduces aggregate performance by treating the most
available servers similarly to the least available ones. Thus, to
mind this gap, we define a small number of classes such that
they approach the optimal performance and value. In addition,
defining a small number of transient classes, each consisting
of many servers, enables providers to more accurately estimate
the aggregate MTTR of each class [28].

We assume the number of idle servers ranges from [0, N ]
at any time t. The platform then partitions N servers into
k classes with each class having Mj servers, such that∑k

j=0Mj = N . As in Figure 4, we assume a strict ordering of
servers with server N having the fewest revocations and server
0 having the most. Thus, higher numbered classes have higher
performance than lower numbered classes. We then offer each
class with a transient guarantee specifying the average MTTR
for transient servers within that class. Since composing the
optimal set of k classes that minimize overhead requires
examining all

(
N
k

)
combinations classes (with complexity

O(nk)), we define two simple heuristic policies.
Equal-Split Policy. Our equal-split policy naïvely divides the
idle server capacity into k equal-sized classes, such that each
class has the same number of N/k servers.
Greedy-Split Policy. In contrast, our greedy-split policy it-
eratively composes classes as follows. The policy starts with
only the most available server N in the first class. The policy
then proceeds iteratively by adding the next most available
server N − 1 to the first class, and then determines whether
the addition of the server increases the aggregate value across
all servers in the class. The aggregate value is computed
as the number of servers Mj in the class multiplied by
the equilibrium price pe of servers in the class, where the
equilibrium price is computed based on the average MTTR
across all servers in the class.

Thus, a tradeoff exists when greedily adding each additional
server (with lesser availability) to a class: adding a new server
increases the total number of servers Mj in the class, but it
decreases the class’ aggregate MTTR and thus the equilibrium
price of all servers pe in the class. As a result, the greedy-split
policy proceeds by adding servers to the first class in order
of their availability (from most to least) until adding the next
server decreases the overall value of the class. The greedy-
split policy then defines a new class, and proceeds in the same
fashion. The policy stops once it has defined k classes, or there
are no more servers to add.

C. Transient Server Pricing

We assume that transient servers are priced such that they
are never idle, i.e., their price is always low enough to attract
saturating demand. Note that our analysis in Section III-A only
derives an equilibrium price, which represents the maximum
amount a user should be willing to pay for a transient server.
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Fig. 5: Utility functions that specify an offered price for a
transient server with a transient guarantee.

In practice, transient servers should be discounted from this
maximum price. For example, recent work defines an economy
class of on-demand servers for Google that are >98.9%
available (instead of near 100%), but proposes selling them for
only 70% of the on-demand price [28]. Thus, they discount
these servers 30% due to only a slight reduction in availability.

Prior work on defining utility functions for real users
indicates a similar steep dropoff in utility for the initial
degradation in performance [29], [30]. Thus, we adopt a
similar exponential utility function for estimating the offered
price of transient servers with different MTTRs. Figure 5 plots
our exponential utility function, where the offered price (as a
percentage of the on-demand price) on the y-axis is a function
of transient server performance on the x-axis (based on the
MTTR). The exponential utility function2 captures the steep
drop-off in price once servers are not 100% available. We
also plot the current price-points for the Google economy
class described above and GCE preemptible instances, which
cost ∼70% of the on-demand price for all servers. Finally, we
plot the equilibrium price, which is simply the line y=x. The
difference between our utility function and the equilibrium
price is the normalized discount from using transient servers.

We use the utility function above in Section V to estimate
the potential revenue from offering transient guarantees. Note
that, to verify transient guarantees, large-scale users can av-
erage their performance across a large number of requests.
Ensuring small-scale users can verify transient guarantees
poses a more challenging problem. While such verification is
outside the scope of this paper, crowd-sourced techniques [31]
are a promising direction.

IV. IMPLEMENTATION

We implemented a cluster simulator in python to evaluate
the performance improvements that transient guarantees offer.
The simulator takes a fixed server capacity as input (where
each server has a specified memory size), as well as a trace of
requests for on-demand servers. Each request specifies a job
to run that includes the number of servers the job requires,
job submission time, and job duration. We assume any excess

2Exponential utility is derived from the function y = 101(x/100) − 1.
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Fig. 6: Overhead due to different checkpointing policies for the m1.large spot market in the U.S. East region of EC2.

capacity is then allocated to the pool of transient servers. Each
transient server incurs an overhead by periodically checkpoint-
ing its memory state. We assume that transient guarantees
specify an MTTR, which transient servers use to compute the
optimal checkpointing interval (based on topt). Our simulator
implements the equal-split and greedy-split algorithms.

The simulator is designed to operate on publicly-available
job traces from a production Google cluster [32]. The trace
contains job characteristics, server configurations, and schedul-
ing decisions on a cluster of 12.5k servers over a 29-day
period. We make a few simplifying assumptions using this job
trace in our evaluation. First, we normalize the heterogeneous
servers in the trace based on the smallest server type, and
assume a cluster with homogeneous servers. If a server runs
multiple jobs concurrently, we assume it runs multiple VMs.
We also rank cluster nodes from 1 to N , and schedule jobs
in rank order (as opposed to following Google’s scheduling
decisions), such that if k jobs are active, they occupy servers
1 to k. These assumptions enable the simulator to avoid trace-
specific scheduling, bin-packing, and cluster management de-
cisions that are not central to evaluating transient guarantees.

V. EVALUATION

Our evaluation first examines the overhead and performance
degradation due to revocation for EC2 spot instances based on
historical spot prices. We then analyze the demand pattern of a
production Google cluster trace [32] over a month-long period
to quantify the benefits of using transient guarantees.

A. EC2 Spot Instance Performance

We evaluate spot instance performance for a representative
EC2 spot market—the m1.large instance type running
Linux in one availability zone of the U.S. East region over
2014. Note that we focus on EC2, since GCE offers no
information on the revocation characteristics of preemptible
instances. The m1.large market represents one of the most
popular configurations of the most popular instance types in
the most popular region of EC2. In this analysis, we assume
a bid equal to the on-demand price, as in prior work [15],
[17], since users can nearly always switch to using on-demand
servers if their spot instances are revoked. Based on spot price
data from 2014, we observe 555 revocations over the year with
an MTTR of ∼15 hours. We assume a modest-sized memory
footprint of 16GB, which takes ∼10 minutes to checkpoint and
restore based on our benchmarks using EBS magnetic disks.

Figure 6a plots the overhead of spot instances in the
m1.large market for three different fault-tolerance policies:
an oracle policy that minimizes overhead by checkpointing
immediately before each revocation, a periodic policy that
checkpoints at the optimal (OPT) periodic interval [7] (topt ∼
2 hours in this case) assuming the MTTR is known, and
a static policy that checkpoints once each hour. The latter
policy is proposed in prior work, since EC2 bills on an
hourly basis [33]. The figure shows that the static per-hour
checkpointing consumes 24% of the useful server-time, and
the optimal periodic policy consumes 12% of the useful server-
time. While the oracle consumes less than 1% overhead, it is
not viable in practice as future demand is not precisely known.

Figure 6b then shows the impact on overhead of incorrectly
setting the checkpointing frequency when computing the op-
timal periodic checkpointing interval from Figure 6a. In this
case, the optimal checkpointing frequency is near 2∗topt, since
the optimal formula is only a first-order approximation and
incorrectly assumes revocation interarrival times are Poisson
distributed. However, recall that with EC2, users actually do
not know future revocation characteristics. The graph shows
that selecting a checkpointing frequency too short can result
in significant additional overhead that further reduces perfor-
mance. Finally, Figure 6c shows the impact of mispredicting
the revocation rate on overhead. In this case, we use the
optimal periodic checkpointing interval, but where we compute
the MTTR based on spot price history over different size past
windows, e.g., the last hour, day, week, month, and year. The
graph shows that overhead varies widely (from 9% to 21%)
depending on the prediction window we select.

Our analysis demonstrates the overheads due to revocation
in EC2’s spot market are already non-trivial. However, while
the overhead generally varies from 10-20%, spot instance
prices are 70-90% less than on-demand servers. As a result,
spot instance prices are currently well below their equilibrium
price. However, volatility in EC2’s spot market is unbounded.
As more users exploit the arbitrage opportunities available in
the spot market, we expect the average spot price to rise and
to become more volatile and less predictable. This volatility
will increase the overhead of spot instances and decrease their
performance. Transient guarantees address this issue.

Result. Volatility in EC2’s spot market, which is unbounded
and unpredictable, already reduces the performance of spot
instances by 9-24% relative to on-demand servers.
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B. Transient Guarantee Performance

Using the Google cluster traces [32], Figure 7(a) plots the
server allocation pattern for two classes of jobs – high-priority
(akin to requests for reserved instances) and low-priority (akin
to requests for on-demand instances). The peak (normalized)
server capacity required for executing both job classes is
∼141k VMs. We assume the cluster is sized precisely for
its peak capacity (such that at some time t all servers are
necessary to satisfy demand). Thus, the white space at the
top of the graph indicates the varying amount of idle server
capacity that is available to offer as transient servers.

Figure 7(b) then plots the idle server capacity over time,
where only those servers that are unused for at least 10 minutes
are considered. Since it takes a few minutes to allocate a new
VM, we do not consider <10 minutes of idle time useful.
The availability of idle capacity ranges from 0 to ∼80k VMs,
where we assume each server has 16GB of memory.

Figure 8a then shows the mean-time-to-revocation (MTTR)
for each transient server in the cluster. While the average
MTTR across all transient servers is 3.72 hours, we note that
the top 10% of servers has an MTTR >84 hours and the top
50% has an MTTR >17 hours. Thus, as discussed earlier,
a large fraction of transient servers experience much longer
periods of availability than reflected in the average MTTR.

Next, we derive the maximum amount of useful server-time
(modulo fault-tolerance overhead) for each transient server,
assuming that we offer each server with a transient guarantee
based on its own unique MTTR. We also plot the useful server-
time assuming an MTTR of 24 hours, 1 hour and 30 minutes
across all transient servers. Figure 8b shows that, in this case,
using a MTTR of 24 hours achieves near the optimal useful
server-time, while using a MTTR of 30 mins reduces the useful
server-time by ∼40% across all servers in the cluster. Since
only 7% of transient servers have an MTTR in the range of

30 minutes, this results in excessive checkpointing overhead
for the vast majority of servers.

Finally, Figure 8c shows that as server memory footprints
increase, they spend an increasing amount of time on fault-
tolerance overhead. However, we observe that this increase is
sublinear based on Equation 2), as the x-axis is on a log scale.
As a result, halving the application size from, say, 16GB to
8GB, only decreases the overhead from ∼25% to ∼18%.
Result: Since idle capacity varies over time, transient servers
exhibit a wide range of characteristics. Checkpointing tran-
sient servers based on incorrect revocation characteristics
results in significant performance losses (up to ∼40%), es-
pecially for the least volatile (and most valuable) servers.

Figure 9a next quantifies the benefit of partitioning transient
servers into multiple classes with different transient guaran-
tees. This graph employs the equal-split policy to partition
transient servers into 1, 2, and 4 classes. In each case, the y-
axis quantifies the average useful time of a server in each class
(modulo checkpointing overhead). The graph demonstrates
how separating transient servers into different classes enables
platforms to offer differentiated quality-of-service for different
transient servers. We see that, as we offer more transient
classes, the increase in the performance of higher classes
is significantly more than the decrease in the performance
of lower classes, thereby increasing the overall performance
of the cluster. For example, moving from a single class
configuration to a two class configuration results in an overall
decrease in fault-tolerance overhead across all transient servers
of 13.5%. This reduction in overhead is due to more accurately
specifying revocation characteristics in multiple classes.

Figure 9b then compares the performance of transient
guarantees with the current approaches used by GCE and EC2.
Since GCE does not reveal any information about preemptible
instances, we consider three distinct fixed-interval checkpoint-
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Fig. 10: Revenue comparison when selling transient servers
for GCE, EC2, and using transient guarantees.

ing policies that assumes a MTTR of 30 minutes, 12 hours, and
24 hours. For EC2, we use the commonly employed one hour
checkpointing strategy [33]. Since EC2’s spot market is strictly
more volatile than our approach, we add differing levels of
market-induced volatility to the Google job trace for EC2.
In this case, adding X% volatility means that we inject X%
more revocations than are dictated solely by variations in the
trace’s demand for servers. These additional X% revocations
imitate users outbidding each other for transient serverss. The
graph shows that the performance of GCE and EC2 is less than
that with transient guarantees. GCE’s performance (assuming
a 24 hour MTTR) is near that of offering a single class
with transient guarantees, but has 13% higher overhead than
offering two separate classes. EC2 also performs worse than
a single class with transient guarantees, largely because of
the additional market-induced volatility. For example with an
additional 25% volatility, its performance is 28% less than
using transient guarantees with a single class.

Finally, we evaluate the potential increase in revenue from
offering multiple classes of servers with transient guarantees
compared to GCE and EC2. For this graph, we use the
exponential utility function from Figure 5 to assign prices to
transient servers based on their performance. Figure 10 then
shows the aggregate revenue from selling GCE preemptible
instances, EC2 spot instances, and using transient guarantees at
these prices. The dot represents the optimal revenue if transient
servers were sold at their equilibrium price. In all cases, we
assume saturating demand, such that all transient servers are

sold. The y-axis quantifies the revenue as a % of the maximum,
where every transient server is priced at its equilibrium price,
for each approach on the x-axis. The maximum number of
transient classes represents the optimal where each transient
server has its own class and revocation characteristics. For
GCE and EC2 we select the top performing configuration from
Figure 9. The figure shows the potential revenue of offering
multiple classes of transient servers.

In this case, using the optimal maximum number of transient
classes achieves 6.5× more revenue than GCE and 14×
more revenue than EC2. In addition, partitioning transient
servers into only two and four classes brings the revenue to
within 25% and 15% of the optimal maximum, respectively.
This result stems from the fact that most of the value of
transient servers derives from the servers with the lowest
volatility. Thus, selling them separately at a higher price yields
significant gains. Thus, while offering each transient server
as its own class is not viable, offering two or four classes
of transient servers is reasonable and can offer significant
benefits. In addition, the greedy-split partitioning policy yields
slightly better revenue that the equal-split policy in all cases,
e.g., adding 20% revenue when offering two classes.
Result: Partitioning servers into just four classes increases
revenue from transient servers by ∼6.5× compared to GCE
and EC2, and comes within 15% of the optimal revenue.

VI. RELATED WORK

Prior work focuses on optimizing existing offerings of
transient servers from a user’s perspective. Much of this
work exploits particular details of EC2’s spot market. For
example, there is substantial prior work on analyzing EC2
spot price characteristics [8], [34], designing optimal bidding
policies [12], [13], [10], and modifying particular applications
to gracefully handle transient servers using fault-tolerance
mechanisms, such as checkpointing [33], [17]. Our work
differs from this work in that we take a platform’s perspective,
and then analyze how best to provide transient servers to users
to maximize their performance, while still allowing platforms
the freedom to revoke transient servers when necessary.



Related work that takes a similar platform-centric perspec-
tive proposes offering a new economy class of on-demand
servers that have slightly lower availability (>98.9%) [28].
The work analyzes data from multiple Google production
clusters and shows that a large fraction of servers (6.7-17.3%)
are idle with high probability for long multi-month time
periods. Our work generalizes and expands upon this idea
by defining the concept of a transient guarantee, and then
showing how to partition idle capacity into an arbitrary number
of transient server classes to maximize the performance of
transient servers. Importantly, we also identify the relationship
between a transient server’s performance and its volatility and
predictability, and define its equilibrium price to capture its
value relative to an on-demand server.

Our analysis assumes transient servers use checkpointing
to handle revocations. While the vast majority of applications
run on transient servers are batch applications that store in-
memory state, some applications that are stateless and need
not checkpoint in-memory state. In this case, the equilibrium
price of the transient server would equal the on-demand price.
Recent work takes advantage of particular properties of EC2
spot instances, such as its two minute revocation warning, to
asynchronously copy memory state to a backup server [15].
The overhead of these approaches is not only dependent on
volatility and predictability, but also the length of the warning.
We leave a consideration of the overhead (and value) of the
warning time to interactive applications as future work.

VII. CONCLUSION

Since transient servers are a new concept and are not
widely used, there remains an opportunity to experiment with
their terms and pricing. We show that the current terms
offered by EC2 and GCE limit the useful performance that
users can extract from transient servers. We propose transient
guarantees to maximize their performance and value, while
still allowing platforms to revoke servers when necessary.
We analyze the performance and cost benefits of transient
guarantees for HPC-oriented batch applications. We show
that the aggregate revenue could increase by up to ∼6.5×
when selling transient servers through transient guarantees
than through the current market mechanisms of EC2 and GCE.
Thus, transient guarantees may represent a better way to offer
and consume transient servers.
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