Transistor: Building Block of Computers

Microprocessors contain millions of transistors
- IBM PowerPC 750FX (2002): 38 million

Logically, each transistor acts as a switch
Combined to implement logic functions
- AND, OR, NOT
Combined to build higher-level structures
- Adder, multiplexer, decoder, register, ...
Combined to build processor
- LC-3
Simple Switch Circuit

Switch open:
• No current through circuit
• Light is off
• V_{out} is +2.9V

Switch closed:
• Short circuit across switch
• Current flows
• Light is on
• V_{out} is 0V

Switch-based circuits can easily represent two states: on/off, open/closed, voltage/no voltage.

n-type MOS Transistor

MOS = Metal Oxide Semiconductor
• two types: n-type and p-type

n-type
• when Gate has positive voltage, short circuit between #1 and #2 (switch closed)
• when Gate has zero voltage, open circuit between #1 and #2 (switch open)

Terminal #2 must be connected to GND (0V).
p-type MOS Transistor

p-type is complementary to n-type

- when Gate has positive voltage, open circuit between #1 and #2 (switch open)
- when Gate has zero voltage, short circuit between #1 and #2 (switch closed)

Terminal #1 must be connected to +2.9V.

Logic Gates

Use switch behavior of MOS transistors to implement logical functions: AND, OR, NOT.

Digital symbols:
- recall that we assign a range of analog voltages to each digital (logic) symbol

<table>
<thead>
<tr>
<th>Digital Values</th>
<th>0</th>
<th>“0”</th>
<th>Illegal</th>
<th>“1”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Values</td>
<td>0</td>
<td>0.5</td>
<td>2.4</td>
<td>2.9 Volts</td>
</tr>
</tbody>
</table>

- assignment of voltage ranges depends on electrical properties of transistors being used
 - typical values for "1": +5V, +3.3V, +2.9V
 - from now on we’ll use +2.9V
CMOS Circuit

Complementary MOS

Uses both **n-type** and **p-type** MOS transistors

- **p-type**
 - Attached to + voltage
 - Pulls output voltage UP when input is zero

- **n-type**
 - Attached to GND
 - Pulls output voltage DOWN when input is one

For all inputs, make sure that output is either connected to GND or to +, but not both!

Inverter (NOT Gate)

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 V</td>
<td>2.9 V</td>
</tr>
<tr>
<td>2.9 V</td>
<td>0 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Truth table
NOR Gate

Note: Serial structure on top, parallel on bottom.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

OR Gate

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Add inverter to NOR.
NAND Gate (AND-NOT)

Note: Parallel structure on top, serial on bottom.

AND Gate

Add inverter to NAND.
Rules of Boolean Algebra

1. Commutative Law
 - $A \cdot B = B \cdot A$
 - $A + B = B + A$

2. Associate Law
 - $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
 - $(A + B) + C = A + (B + C)$

3. Distributive Law
 - $(A + B) \cdot C = (A \cdot C) + (B \cdot C)$
 - $(A \cdot B) + C = (A + C) \cdot (B + C)$

4. Identities
 - $A + 0 = A$
 - $A \cdot 1 = A$

5. Inverse
 - $A + 1 = 1$
 - $A \cdot 0 = 0$

6. $A + A = A$
 - $A \cdot A = A$

7. $A + (A') = 1$
 - $A \cdot (A') = 0$

8. $A' = A$

9. De Morgan’s Theorem
 - $(A + B)' = (A)' \cdot (B)’$
 - $(A \cdot B)' = (A)' + (B)'$

Usually ' is evaluated first, then *, then +, with this order being changed by using parentheses.
DeMorgan's Law

Converting AND to OR (with some help from NOT)

Consider the following gate:

\[
\begin{array}{c|c|c|c}
A & B & A \cdot B & \overline{A \cdot B} \\
\hline
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
\end{array}
\]

To convert AND to OR (or vice versa), invert inputs and output.

\[
a + b + c = (a' b' c')'
\]

\[
\begin{align*}
(a + b + c)' &= a' b' c' \\
(a b c)' &= a' + b' + c' \\
(a b c) &= (a' + b' + c')'
\end{align*}
\]

Functionally complete set of gates

Any boolean function can be represented by the gates in this set:

- AND, OR, NOT
- AND, NOT
- OR, NOT
- NAND
- NOR

Example: Convert the following boolean expression to a form that uses only gates in one of the above sets?

Hint: use De Morgan’s law

\[
f = abc + a'b'c + abc'
\]
Convert everything to NAND gates
The NAND gate is the universal gate. All other logic gates can be built from a NAND.

NOT gate using NAND

\[\overline{A} = (A \cdot A) \text{ or } (A \cdot 1) \]

2-input AND gate using NAND gates

AND gate using NAND

\[A \cdot B = \overline{(A \cdot B) \cdot (A \cdot B)} \]

Two steps
- First, compute \((A \cdot B)\)
- Next, invert the result using NOT gate (Slide 16) to get \((A \cdot B)\)
2-input OR gate using NAND gates

\[Q = A + B = (\overline{A} \cdot \overline{B}) \text{ using De Morgan’s law} \]

Compute \(\overline{A} \) and \(\overline{B} \) using NOT operation

More than 2 Inputs?

AND/OR can take any number of inputs.

- AND = 1 if all inputs are 1.
- OR = 1 if any input is 1.
- Similar for NAND/NOR.

Can implement with multiple two-input gates, or with single CMOS circuit.
Canonical Forms

Standard form for a Boolean expression - unique algebraic expression directly from a true table (TT) description.

Two Types:
- Sum of Products (SOP)
- Product of Sums (POS)

Sum of Products: Output is 1 if any one of the input combinations that produce 1 is true. (disjunctive normal form, minterm expansion).

Example:

<table>
<thead>
<tr>
<th>minterms</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>a'b'c'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a'b'c</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>a'bc'</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a'bc</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ab'c'</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ab'c</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>abc'</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>abc</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

One product (and) term for each 1 in f:

\[
f = a'b'c' + ab'c' + ab'c + abc' + abc
\]

Alternate representation: Output is 1 if any none of the input combinations that produce 0 is true.

Example:

<table>
<thead>
<tr>
<th>minterms</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>a'b'c'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a'b'c</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>a'bc'</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a'bc</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ab'c'</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ab'c</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>abc'</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>abc</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

None of the zero terms are true =>

\[
f = (a'b'c')'(a'b'c)'(a'bc')'
\]

Using De Morgan’s law:

\[
f = (a + b + c)(a + b + c')(a + b' + c)
\]
Canonical Forms

Product of Sums: (conjunctive normal form, maxterm expansion).

Example:

<table>
<thead>
<tr>
<th>maxterms</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>a+b+c</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a+b+c'</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>a+b'+c</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a+b'+c'</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a'+b+c</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a'+b+c'</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a'+b'+c</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a'+b'+c'</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

One sum (or) term for each 0 in f:
f = (a+b+c)(a+b+c')(a+b'+c)

Mapping from SOP to POS (or POS to SOP): Derive truth table then proceed.

Sum of Products (cont.)

Canonical Forms are usually not minimal:

Our Example:

\[f = a'bc + ab'c' + ab'c + abc' + abc + abc' + abc' + abc \]

\[(xy' + xy = x) \]

\[= a'bc + ab' + ab \]

\[= a'bc + a \]

\[(x'y + x = y + x) \]

\[= a + bc \]

Goal: Simplify the boolean expression to use minimum number of gates
Karnaugh Maps
K-Maps are a convenient way to simplify Boolean Expressions.
They can be used for up to 4 or 5 variables.
They are a visual representation of a truth table.
Expression are most commonly expressed in sum of products form.

Truth table to K-Map

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The expression is:
\[\overline{A}.B + \overline{A}.B + A.B \]
minterms are represented by a 1 in the corresponding location in the K map.
K-Maps
Adjacent 1’s can be “paired off”
Any variable which is both a 1 and a zero in this pairing can be eliminated
Pairs may be adjacent horizontally or vertically
B is eliminated, leaving \overline{A} as the term
A is eliminated, leaving B as the term
The expression becomes $\overline{A} + B$

Three Variable K-Map
One square filled in for each minterm.
Notice the code sequence: 00 01 11 10 – a Gray code.

$A \cdot B \cdot C + \overline{A} \cdot \overline{B} \cdot C + A \cdot \overline{B} \cdot C$
Grouping the Pairs

Our truth table simplifies to \(A \cdot \overline{C} + B \cdot \overline{C} \).

Here, we can “wrap around” and this pair equates to \(A \cdot \overline{C} \) as \(B \) is eliminated.

The solution is \(B \) because it is a 1 over the whole block (vertical pairs) = \(BC + \overline{B}C = B(C + \overline{C}) = B \).
Karnaugh Maps

Three Variable K-Map

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A.B.C</td>
<td>A.B.C</td>
<td>A.B.C</td>
<td>A.B.C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A.B.C</td>
<td>A.B.C</td>
<td>A.B.C</td>
<td>A.B.C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Extreme ends of same row considered adjacent

Karnaugh Maps

Three Variable K-Map example

\[X = \overline{A}.B.C + A.B.\overline{C} + \overline{A}.B.\overline{C} + A.B.\overline{C} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[X = \]
The Block of 4, again

\[
\begin{array}{c|c|c|c}
A & B & C & D \\
--- & --- & --- & --- \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
\end{array}
\]

\[X = \overline{C}\]

Karnaugh Maps

Four Variable K-Map example

\[F = \overline{A} \cdot B \cdot C \cdot D + \overline{A} \cdot B \cdot C \cdot \overline{D} + A \cdot B \cdot C \cdot D + A \cdot B \cdot C \cdot \overline{D} + A \cdot \overline{B} \cdot C \cdot D + A \cdot \overline{B} \cdot C \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D\]

\[
\begin{array}{c|c|c|c}
A & B & C & D \\
--- & --- & --- & --- \\
00 & 0 & 1 & 1 \\
01 & & & \\
11 & & & \\
10 & & & \\
\end{array}
\]
Karnaugh Maps

Four Variable K-Map solution

\[F = \overline{A}.B.C.D + \overline{A}.B.C.D + \overline{A}.B.C.D + \overline{A}.B.C.D + \overline{A}.B.C.D + \overline{A}.B.C.D + \overline{A}.B.C.D \]

<table>
<thead>
<tr>
<th>(\overline{A})</th>
<th>(\overline{B})</th>
<th>(\overline{C})</th>
<th>(\overline{D})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\overline{0})</td>
<td>(\overline{0})</td>
<td>(\overline{0})</td>
<td>(\overline{0})</td>
</tr>
<tr>
<td>(\overline{0})</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>(\overline{1})</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>(\overline{1})</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
</tbody>
</table>

\[F = \overline{B}.D + \overline{A}.C \]

Summary

MOS transistors are used as switches to implement logic functions.
- n-type: connect to GND, turn on (with 1) to pull down to 0
- p-type: connect to +2.9V, turn on (with 0) to pull up to 1

Basic gates: NOT, NOR, NAND
- Logic functions are usually expressed with AND, OR, and NOT

DeMorgan’s Law
- Convert AND to OR (and vice versa) by inverting inputs/output.
- Use to convert from Sum of Product to Product of Sum form.

Universal NAND Gates
- All other gates can be represented using NAND gates

Boolean Expressions
- Simplify boolean expression using Karnaugh maps
Building Functions from Logic Gates

Combinational Logic Circuit
- output depends only on the current inputs
- stateless

Sequential Logic Circuit
- output depends on the sequence of inputs (past and present)
- stores information (state) from past inputs

We'll first look at some useful combinational circuits, then show how to use sequential circuits to store information.

Decoder

n inputs, 2^n outputs
- exactly one output is 1 for each possible input pattern

[Diagram of a 2-bit decoder with logic gates and conditions for each output]
Multiplexer (MUX)

n-bit selector and 2^n inputs, one output

- output equals one of the inputs, depending on selector

```
    A  B  C  D
  +---+---+---+---+
    |   |   |   |   |
  +---+---+---+---+
  |   |   |   |   |
  |   |   |   |   |
  +---+---+---+---+
    S_1  S_0

A, if S=00
B, if S=01
C, if S=10
D, if S=11
```

4-to-1 MUX

Full Adder

Add two bits and carry-in, produce one-bit sum and carry-out.

```
|   |   |   |   |   | S | C_out |
|---------------|-----|-----|
| A  | B  | C_in|   |   |   |      |
| 0  | 0  | 0   |   |   |   | 0 0   |
| 0  | 0  | 1   |   |   |   | 1 0   |
| 0  | 1  | 0   |   |   |   | 0 1   |
| 0  | 1  | 1   |   |   |   | 1 0   |
| 1  | 0  | 0   |   |   |   | 0 1   |
| 1  | 0  | 1   |   |   |   | 1 1   |
| 1  | 1  | 0   |   |   |   | 0 1   |
| 1  | 1  | 1   |   |   |   | 1 1   |
```

3-39

3-40
Four-bit Adder

![Four-bit Adder Diagram](image)

Logical Completeness

Can implement **ANY** truth table with AND, OR, NOT.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

1. AND combinations that yield a "1" in the truth table.
2. OR the results of the AND gates.
Combinational vs. Sequential

Combinational Circuit
- always gives the same output for a given set of inputs
 - ex: adder always generates sum and carry, regardless of previous inputs

Sequential Circuit
- stores information
- output depends on stored information (state) plus input
 - so a given input might produce different outputs, depending on the stored information
- example: ticket counter
 - advances when you push the button
 - output depends on previous state
- useful for building “memory” elements and “state machines”

R-S Latch: Simple Storage Element
R is used to “reset” or “clear” the element – set it to zero.
S is used to “set” the element – set it to one.

If both R and S are one, out could be either zero or one.
- “quiescent” state – holds its previous value
- note: if a is 1, b is 0, and vice versa
Clearing the R-S latch
Suppose we start with output = 1, then change R to zero.

Output changes to zero.

Then set R=1 to "store" value in quiescent state.

Setting the R-S Latch
Suppose we start with output = 0, then change S to zero.

Output changes to one.

Then set S=1 to "store" value in quiescent state.
R-S Latch Summary

R = S = 1
- hold current value in latch

S = 0, R = 1
- set value to 1

R = 0, S = 1
- set value to 0

R = S = 0
- both outputs equal one
- final state determined by electrical properties of gates
- *Don’t do it!*

Gated D-Latch

Two inputs: D (data) and WE (write enable)

- when WE = 1, latch is set to value of D
 - S = NOT(D), R = D
- when WE = 0, latch holds previous value
 - S = R = 1

![Gated D-Latch Diagram]
Register
A register stores a multi-bit value.
• We use a collection of D-latches, all controlled by a common WE.
• When WE=1, n-bit value D is written to register.

Representing Multi-bit Values
Number bits from right (0) to left (n-1)
• just a convention -- could be left to right, but must be consistent
Use brackets to denote range:
D[1:r] denotes bit 1 to bit r, from left to right

A = \begin{array}{c}
\underline{0101001101010101} \\
\end{array}
\begin{array}{c}
^{15}_{0}
\end{array}

A[14:9] = 101001
A[2:0] = 101

May also see A<14:9>,
especially in hardware block diagrams.
Memory
Now that we know how to store bits, we can build a memory – a logical $k \times m$ array of stored bits.

Address Space:
number of locations
(usually a power of 2)

Addressability:
number of bits per location
(e.g., byte-addressable)

$2^2 \times 3$ Memory

![Diagram of a 2x3 memory with inputs and outputs labeled](image)
More Memory Details

This is not the way actual memory is implemented.
- fewer transistors, much more dense, relies on electrical properties

But the logical structure is very similar.
- address decoder
- word select line
- word write enable

Two basic kinds of RAM (Random Access Memory)

Static RAM (SRAM)
- fast, maintains data as long as power applied

Dynamic RAM (DRAM)
- slower but denser, bit storage decays – must be periodically refreshed

Also, non-volatile memories: ROM, PROM, flash, ...

State Machine

Another type of sequential circuit
- Combines combinational logic with storage
- "Remembers" state, and changes output (and state) based on inputs and current state

State Machine

Combinational Logic Circuit

Storage Elements

Inputs

Outputs
Combinational vs. Sequential
Two types of “combination” locks

Combinational
Success depends only on the **values**, not the order in which they are set.

Sequential
Success depends on the **sequence** of values (e.g., R-13, L-22, R-3).

State
The **state** of a system is a **snapshot** of all the relevant elements of the system at the moment the snapshot is taken.

Examples:
- The state of a basketball game can be represented by the scoreboard.
 - Number of points, time remaining, possession, etc.
- The state of a tic-tac-toe game can be represented by the placement of X’s and O’s on the board.
State of Sequential Lock

Our lock example has four different states, labelled A-D:

A: The lock is not open, and no relevant operations have been performed.

B: The lock is not open, and the user has completed the R-13 operation.

C: The lock is not open, and the user has completed R-13, followed by L-22.

D: The lock is open.

State Diagram

Shows states and actions that cause a transition between states.
Finite State Machine
A description of a system with the following components:

1. A finite number of states
2. A finite number of external inputs
3. A finite number of external outputs
4. An explicit specification of all state transitions
5. An explicit specification of what determines each external output value

Often described by a state diagram.
- Inputs trigger state transitions.
- Outputs are associated with each state (or with each transition).

The Clock
Frequently, a clock circuit triggers transition from one state to the next.

At the beginning of each clock cycle, state machine makes a transition, based on the current state and the external inputs.

- Not always required. In lock example, the input itself triggers a transition.
Implementing a Finite State Machine

Combinational logic
- Determine outputs and next state.

Storage elements
- Maintain state representation.

Storage: Master-Slave Flipflop
A pair of gated D-latches, to isolate next state from current state.

During 1st phase (clock=1), previously-computed state becomes current state and is sent to the logic circuit.

During 2nd phase (clock=0), next state, computed by logic circuit, is stored in Latch A.
Storage
Each master-slave flipflop stores one state bit.

The number of storage elements (flipflops) needed is determined by the number of states (and the representation of each state).

Examples:
• Sequential lock
 ➢ Four states – two bits
• Basketball scoreboard
 ➢ 7 bits for each score, 5 bits for minutes, 6 bits for seconds, 1 bit for possession arrow, 1 bit for half, ...

Complete Example
A blinking traffic sign
• No lights on
• 1 & 2 on
• 1, 2, 3, & 4 on
• 1, 2, 3, 4, & 5 on
• (repeat as long as switch is turned on)
Traffic Sign State Diagram

Transition on each clock cycle.

Traffic Sign Truth Tables

Outputs (depend only on state: \(S_1\)\(S_0\))

<table>
<thead>
<tr>
<th>(S_1)</th>
<th>(S_0)</th>
<th>(Z)</th>
<th>(Y)</th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Next State: \(S_1'S_0'\) (depend on state and input)

<table>
<thead>
<tr>
<th>(\text{In})</th>
<th>(S_1)</th>
<th>(S_0)</th>
<th>(S_1')</th>
<th>(S_0')</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Whenever \(\text{In}=0\), next state is 00.
Traffic Sign Logic

From Logic to Data Path

The data path of a computer is all the logic used to process information.
- See the data path of the LC-3 on next slide.

Combinational Logic
- Decoders -- convert instructions into control signals
- Multiplexers -- select inputs and outputs
- ALU (Arithmetic and Logic Unit) -- operations on data

Sequential Logic
- State machine -- coordinate control signals and data movement
- Registers and latches -- storage elements
LC-3 Data Path

Combinational Logic

Storage

State Machine