
1

Managing Risk in a Derivative IaaS Cloud
Prateek Sharma, Stephen Lee, Tian Guo, David Irwin, and Prashant Shenoy

F

Abstract—Infrastructure-as-a-Service (IaaS) cloud platforms rent com-
puting resources with different cost and availability tradeoffs. For example,
users may acquire virtual machines (VMs) in the spot market that are
cheap, but can be unilaterally terminated by the cloud operator. Because
of this revocation risk, spot servers have been conventionally used for
delay and risk tolerant batch jobs. In this paper, we develop risk mitigation
policies which allow even interactive applications to run on spot servers.

Our System, SpotCheck is a derivative cloud platform, and provides
the illusion of an IaaS platform that offers always-available VMs on
demand for a cost near that of spot servers, and supports unmodified
applications. SpotCheck’s design combines virtualization-based mech-
anisms for fault-tolerance, and bidding and server selection policies for
managing the risk and cost. We implement SpotCheck on EC2 and show
that it i) provides nested VMs with 99.9989% availability, ii) achieves upto
2-5× cost savings compared to using on-demand VMs, and iii) eliminates
any risk of losing VM state.

Index Terms—Distributed computing, Platform virtualization, System
software, Virtual machine monitors

1 INTRODUCTION

Many enterprises, especially technology startup companies, rely in
large part on Infrastructure-as-a-Service (IaaS) cloud platforms for
their computing infrastructure [8]. Today’s IaaS cloud platforms,
which enable customers to rent computing resources on demand
in the form of virtual machines (VMs), offer numerous benefits,
including a pay-as-you-use pricing model, the ability to quickly
scale capacity when necessary, and low costs due to their high
degree of statistical multiplexing and massive economies of scale.

To meet the needs of a diverse set of customers, IaaS platforms
rent VM servers under a variety of contract terms that differ
in their cost and availability guarantees. The simplest type of
contract is for an on-demand server, which a customer may request
at any time and incurs a fixed cost per unit time of use. On-
demand servers are non-revocable: customers may use these servers
until they explicitly decide to relinquish them. In contrast, spot
servers provide an entirely different type of contract for the same
resources. Spot servers incur a variable cost per unit time of use,
where the cost fluctuates continuously based on the spot market’s
instantaneous supply and demand. Unlike on-demand servers, spot
servers are revocable: the cloud platform may reclaim them at any
time. Typically, a customer specifies an upper limit on the price
they are willing to pay for a server, and the platform reclaims the
server whenever the server’s spot price rises above the specified bid
limit. Since spot servers incur a risk of unexpected resource loss,
they offer weaker availability guarantees than on-demand servers
and tend to be much cheaper.

This is an expanded and revised version of a preliminary paper that appeared
at EuroSys 2015 [29].

This paper focuses on the design of a derivative cloud platform,
which repackages and resells resources purchased from native IaaS
platforms. Analogous to a financial derivative, a derivative cloud
can offer resources to customers with different pricing models and
availability guarantees not provided by native platforms using a mix
of resources purchased under different contracts. The motivation for
derivative clouds stems from the need to better support specialized
use-cases that are not directly supported (or are complex for
end-users to implement) by the server types and contracts that
native platforms offer. Derivative clouds rent servers from native
platforms, and then repackage and resell them under contract terms
tailored to a specific class of user.

Nascent forms of derivative clouds already exist. PiCloud [5]
offers a batch processing service on top of EC2 spot instances to
reduce costs. Similarly, Heroku [4] offers a Platform-as-a-Service
by repackaging and reselling IaaS resources as resource containers.
As with PiCloud, Heroku constrains the user’s programming
model—in this case, to containerized applications.

In this paper, we design a derivative IaaS cloud platform, called
SpotCheck, that intelligently uses a mix of spot and on-demand
servers to provide high availability guarantees that approach those
of on-demand servers at a low cost that is near that of spot
servers. In doing so, SpotCheck must balance cost and risk. In this
paper, we define, implement, and evaluate multiple risk mitigation
strategies for spot instances. Unlike the examples above, SpotCheck
does not constrain the programming model but instead offers
unrestricted IaaS-like VMs to users, enabling them to execute any
application. The simple, yet key, insight underlying SpotCheck
is to host customer applications (within nested VMs) on spot
servers whenever possible, and transparently migrate them to on-
demand servers whenever the native IaaS platform revokes spot
servers. SpotCheck offers customers numerous benefits compared
to natively using spot servers. Most importantly, SpotCheck enables
interactive applications, such as web services, to seamlessly run on
revocable spot servers without sacrificing high availability, thereby
lowering the cost of running these applications. We show that,
in practice, SpotCheck provides nearly five nines of availability
(99.9989%), which is likely adequate for all but the most mission
critical applications.

SpotCheck raises many interesting systems design questions,
including i) how do we transparently migrate a customer’s applica-
tion before a spot server terminates while minimizing performance
degradation and downtime? ii) how do we manage multiple pools of
servers with different costs and availability guarantees from native
IaaS platforms and allocate (or re-sell) them to customers? iii) how
do we minimize costs, while mitigating user risk, by renting the
cheapest mix of servers that minimize spot server revocations, i.e.,
to yield the highest availability? In addressing these questions, we

2

 0

 1

 2

 3

 4

 5

 6

03/27
14:00

03/28
00:00

03/28
10:00

03/28
20:00

03/29
06:00

03/29
16:00

P
ri
c
e

 (
$

/h
r)

Time

Fig. 1. Spot price of the m1.small server in EC2 fluctuates over time
and can rise significantly above the on-demand price ($0.06 per hour)
during price spikes. Note the y-axis is denominated in dollars, not cents.

make the following contributions.
Derivative Cloud Design. We demonstrate the feasibility of
running disruption-intolerant applications, such as interactive multi-
tier web applications, on spot servers, by migrating them i) to on-
demand servers upon spot server revocation, and ii) back when spot
servers become available again. SpotCheck requires live migrating
applications from spot servers to on-demand servers within the
bounded amount of time between the notification of a spot server
revocation and its actual termination. SpotCheck combines several
existing mechanisms to implement live bounded-time migrations,
namely nested virtualization, live VM migration, bounded-time
VM migration, and lazy VM restoration.
Intelligent Server Pool Management. We design server pool
management algorithms that balance three competing goals: i)
maximize availability, ii) reduce the risk of spot server revocation,
and iii) minimize cost. To accomplish these goals, we present
multiple risk management strategies for SpotCheck, including
intelligently mapping customers to multiple pools of spot and on-
demand servers of different types, and handling pool dynamics due
to sudden revocations of spot servers or significant price changes.
Implementation and Evaluation. We implement SpotCheck on
Amazon’s Elastic Compute Cloud (EC2) and evaluate its migration
mechanisms, pool management algorithms, and risk mitigation
strategies. Our results demonstrate that SpotCheck achieves a
cost that is nearly 5× less than equivalent on-demand servers,
with nearly five 9’s of availability (99.9989%), little performance
degradation, and no risk of losing VM state.

2 BACKGROUND AND OVERVIEW

Our work assumes a native IaaS cloud platform, such as EC2,
that rents servers to customers in the form of VMs, and offers a
variety of server types that differ in their number of cores, memory
allotment, network connectivity, and disk capacity. We also assume
the native platform offers at least two types of contracts—on-
demand and spot—such that it cannot revoke on-demand servers
once it allocates them, but it can revoke spot servers. Finally, we
assume on-demand servers incur a fixed cost per unit time of use,
while the cost of spot servers varies continuously based on the
market’s supply and demand, as shown in Figure 1. 1

Given the assumptions above, SpotCheck must manage pools
of servers with different costs and availability values. While our
work focuses on spot servers, largely as defined in EC2, such cost
and availability tradeoffs arise in other scenarios. As one example,
data centers that participate in demand response (DR) programs
offered by electric utilities may have to periodically deactivate
subsets of servers during periods of high electricity demand in

1. Spot price data is from either Amazon’s publicly-available history of the
spot price’s past six months, or from a third-party spot price archive [20].

VM VM VM VM VMVM

Customers

Derivative Cloud

Native IaaS Cloud

Request
Servers

Lease Servers

Resell
Servers

VM

Server Pool Server Pool Server Pool
VMVM

Fig. 2. A depiction of a derivative IaaS cloud platform.

the grid. While participation in DR programs significantly reduces
electricity rates, it also reduces server availability.

Like the underlying native IaaS platform, SpotCheck offers
the illusion of dedicated servers to its customers. In particular,
SpotCheck offers its customers the equivalent of non-revocable
on-demand servers, where only the user can make the decision to
relinquish them. SpotCheck’s goal is to provide server availability
that is close to that of native on-demand servers for a cost that is
near that of spot servers. To do so, SpotCheck uses low-cost spot
servers whenever possible and “fails over” to high-cost on-demand
servers, or other spot servers, whenever the native IaaS platform
revokes spot servers. To maintain high availability, migrating from
one type of native cloud server to another must be transparent to
the end-user, which requires minimizing application performance
degradation and server downtime. Section 7 quantifies how well
SpotCheck achieves these goals.

SpotCheck supports multiple customers, each of which may
rent an arbitrary number of servers. Since SpotCheck rents servers
from a native IaaS cloud and repackages and resells their resources
to its own customers, it must manage pools of spot and on-
demand servers of different types and sizes, as depicted in Figure
2. Upon receiving a customer request for a new server, SpotCheck
must decide which server pool should host the new instance.
Upon revocation of one or more native servers from a spot pool,
SpotCheck must migrate hosted customers to either an on-demand
server pool or another spot pool. SpotCheck intelligently maps
customers to pools to spread the risk of concurrent revocations
across customers, which reduces the risk of a single customer
experiencing a “revocation storm.” In some sense, allocating
customer requests to server pools is analogous to managing a
financial portfolio where funds are spread across multiple asset
classes to reduce volatility and market risk.

In addition to server pool management, SpotCheck’s other key
design element is its ability to seamlessly migrate VMs from one
pool to another, e.g., from a spot pool to an on-demand pool upon a
revocation, or from an on-demand pool to a spot pool when cheaper
spot servers become available. To do this, we rely on the native
IaaS platform to provide a small advance warning of spot server
termination. SpotCheck then migrates its customers’ VMs to native
servers in other pools upon receiving a warning, and ensures that
the migrations complete in the time between receiving the warning
and the spot server actually terminating.

3 SPOTCHECK MIGRATION STRATEGIES

We describe SpotCheck’s migration strategies and mechanisms
when migrating a VM from one native cloud server to another.

3

VM Allocated
To Derivative Cloud

Nested Hypervisor
(Xen-Blanket)

Native Hypervisor

Nested Hypervisor
(Xen-Blanket)

Native Hypervisor

Resume
(Lazy Restore)

Physical Server1 Physical Server2

Checkpoint
Memory State

Backup
Server

Nested VM
Allocated

to Customer

Restored
Nested VM

Fig. 3. SpotCheck bounded-time VM migration for moving nested VMs
within an IaaS platform.
3.1 Nested Virtualization

SpotCheck rents VMs from native IaaS platforms that do not expose
all of the functionality of the VM hypervisor. For example, EC2 al-
locates VMs to its customers, but does not expose control over VM
placement or support VM migration to different physical servers.
To address this limitation, SpotCheck uses nested virtualization,
where a nested hypervisor runs atop a traditional VM, which itself
runs on a conventional hypervisor [10], [35]. The nested hypervisor
enables the creation of nested VMs on the host VM. Since the
nested hypervisor does not need special support from the host VM,
SpotCheck can install it on VMs rented from native IaaS platforms
and use it to migrate nested VMs from one cloud server to another,
as depicted in Figure 3.

Our SpotCheck prototype uses the XenBlanket nested hy-
pervisor [35]. One benefit of using nested virtualization is that
SpotCheck can create multiple nested VMs on a single host VM,
allowing it to slice large native VMs into smaller nested VMs
and allocate them to different customers, similar to how an IaaS
platform slices a physical server into multiple VMs.

3.2 VM Migration

Since SpotCheck runs nested hypervisors on VM servers acquired
from native IaaS platforms, it has the ability to migrate nested
VMs from one server to another. SpotCheck leverages two VM
migration mechanisms to implement its migration strategy: live
migration and bounded-time VM migration.

Live VM migration enables SpotCheck to migrate a nested VM
from one server to another, while incurring nearly zero downtime
to a customer’s resident applications. However, live-migration is
requires time proportional to the size of the VM’s memory and
the page dirty (write) rate. As a result, live migrating a VM is not
always feasible, since an IaaS platform may revoke a spot server
at any time, while providing only a small warning period for the
server to complete a graceful shutdown. Once the warning period
ends, the IaaS platform forcibly terminates the VM. For example,
EC2 provides a warning of 120 seconds before forcibly terminating
a spot server [9]. Importantly, if the latency to live migrate a VM
exceeds the warning period, then the spot server termination causes
resident nested VMs to lose their memory state.

SpotCheck leverages an alternative migration approach, called
bounded-time VM migration [30], [31], which provides a guaran-
teed upper bound on migration latency that is independent of a
VM’s memory size or the page dirty rate. Supporting bounded-time
VM migration requires maintaining a partial checkpoint of a VM’s
memory state on an external disk by running a background process
that continually flushes dirty memory pages to a backup server
to ensure the size of the dirty pages does not exceed a specified
threshold. This threshold is chosen such that any outstanding dirty
pages can be safely committed upon a revocation within the time
bound [30], [31]. The VM may then resume from the saved memory

state on a different server, as depicted in Figure 3.
When migrating a nested VM from an on-demand server to a

spot server, e.g., when a cheaper spot server becomes available,
SpotCheck uses live migration regardless of the nested VM’s
memory size, since there is no constraint on the migration latency.
When migrating a nested VM from a revoked spot server, bounded-
time VM migration is usually necessary, since the migration must
complete before the spot server terminates.

To support bounded-time VM migration, SpotCheck must
manage a pool of backup servers that store the memory state
of nested VMs on spot servers, and continuously receive and
commit updates to this state. As we show in Section 7, each backup
server is able to host tens of nested VMs without degrading their
performance, which makes the incremental cost of using such
additional backup servers small in practice.

3.3 Lazy VM Restoration

Bounded-time VM migration is a form of VM suspend-resume
that saves, or suspends, the VM’s memory state to a backup server
within a bounded time period, and then resumes the VM on a new
server. Resuming a VM requires restoring its memory state by
reading it from the disk on the backup server into RAM on the
new server. The VM cannot function during the restoration process,
which causes downtime until the VM state is read completely into
memory. Since the downtime of this traditional VM restoration is
disruptive, SpotCheck employs lazy VM restoration [19], [22] to
reduce the downtime to nearly zero. Lazy VM restoration involves
reading a small number of initial VM memory pages—the skeleton
state—from disk into RAM and then immediately resuming VM
execution without any further waiting.

The remaining memory pages are fetched from the backup
server on demand, akin to virtual memory paging, whenever the
VM’s execution reads or writes any of these missing pages. Lazy
VM restoration substantially reduces the latency to resume VM
execution at the expense of a small window of slightly degraded
performance, due to any page faults that require reading memory
pages on demand. Combining lazy VM restoration with bounded-
time VM migration enables a new “live” variant of bounded-time
VM migration that minimizes the downtime when migrating VMs
within a bounded time period upon revocation.

3.4 Virtual Private Networks

While the migration mechanisms above minimize customers’ down-
time and performance degradation during migrations, maximizing
transparency also requires that the IP address of customers’ nested
VMs migrate to the new host to prevent breaking any active network
connections. In a traditional live migration, the VM emits an arp
packet to inform network switches of its new location, enabling
switches to forward subsequent packets to the new host and
ensuring uninterrupted network connections for applications [15].
However, in SpotCheck, the underlying IaaS platform is unaware of
the presence of nested VMs on the host VMs. SpotCheck currently
employs a separate physical interface on the host VM to provide
each nested VM its own IP address, in addition to the host’s default
interface and IP address. Thus, SpotCheck configures Network
Address Translation (NAT) in the nested hypervisor to forward
all network packets arriving at an IP address to its associated
nested VM. IaaS platforms, such as EC2, make this feasible by
supporting the creation of multiple interfaces and IP addresses
on each host. However, since the IP address is associated with
the host VM, the address does not automatically migrate with

4

Backup Sever Pool

Customer 1 Customer 2 Customer n

VPC 10.1.0.0/16 VPC 10.2.0.0/16 VPC 10.n.0.0/16

VPC 192.1.0.0/16

Fig. 4. SpotCheck creates separate VPCs for each customer. Customers
can share a pool of backup servers by connecting to backup server VPC.
In Amazon EC2, this is done through VPC peering.

Assign to Pools

Checkpointing
Memory State

Backup Servers

Customer 1 Customer 2 Customer 3

Spot pool 1 Spot pool 2 On-Demand pool

Fig. 5. SpotCheck’s architecture using multiple pools.

the nested VM. Instead, SpotCheck must take additional steps to
detach a nested VM’s address from the host VM of the source
and reattach it to the destination host. EC2 supports VPNs through
its Virtual Private Cloud (VPC) feature, which creates logically
isolated virtual networks and enables users to directly assign IP
addresses to their VMs. This ensures the IP address of nested VMs
remains unchanged after migration.

3.5 Putting it all together
SpotCheck combines nested virtualization, virtual private networks,
VM migration, and lazy VM restoration to implement its migration
strategies. Upon initial allocation, we assign a backup server to
each nested VM on a spot server, which stores its memory state.
Upon spot server revocation, SpotCheck migrates the nested VM
to a new destination server via bounded-time VM migration.

The destination server is chosen by a higher-level server
pool management algorithm. Once the VM’s migration completes,
SpotCheck uses VPC functions to deallocate the IP address on the
source server, and then reallocate the IP address on the destination
server and configure the nested hypervisor to forward packets to
the new address. SpotCheck also must detach the VM’s network-
attached disk volume and reattach it to the destination server before
the VM resumes operation. We discuss SpotCheck’s treatment
of storage more in Section 6. If SpotCheck employs bounded-
time VM migration, it uses lazy VM restoration to minimize the
migration downtime.

4 SPOTCHECK ARCHITECTURE

SpotCheck’s architecture maintains multiple pools of servers, as
shown in Figure 5, where each pool contains multiple native
VM servers of a particular type, specifying an allotment of CPU
cores with specified performance, memory, network bandwidth,
etc. For each server type, SpotCheck maintains separate spot and
on-demand pools. SpotCheck exposes a user interface similar to
that of a native IaaS platform, where customers may request and
relinquish servers of different types. However, SpotCheck offers its
customers the abstraction of non-revocable servers, despite often

executing them on revocable spot servers.
SpotCheck maps its customers’ nested VMs, which may be of

multiple types, to different server pools, as illustrated in Figure 5.
By diversifying its portfolio of spot pools and smartly placing
customer VMs in these pools, SpotCheck is able to reduce the
number of concurrent revocations. Policies for managing spot
pools to are discussed in Section 5.1. In addition, SpotCheck also
maintains a pool of backup servers, each capable of maintaining
checkpoints of memory state for multiple nested VMs hosted on
spot servers. Thus, SpotCheck assigns each native server from a
spot pool to a distinct backup server, such that any nested VMs
hosted on it write their dirty memory pages to their backup server
in the background. SpotCheck does not assign native servers in the
on-demand pool to a backup server, since they can live migrate any
nested VMs hosted on them without any time constraints. Policies
for mapping VMs to backup servers are discussed in Section 5.3.

Given the architecture above, we next describe the techniques
and algorithms SpotCheck employs to manage server pools, handle
pool dynamics, and mitigate the risk of revocation.

5 MANAGING RISKS

This section describes the various risks encountered when running
a derivative cloud on inherently volatile markets and presents
multiple policies to manage these risks. SpotCheck’s migration
strategies provide system-level mechanisms that leverage spot
servers by migrating applications away from spot servers upon
revocation. However, running applications using these revocable
spot servers requires managing multiple risks in order to reduce the
number of revocation events, reduce the impact of revocation
storms, and maintain the efficiency of restoration. SpotCheck
manages potential risks in all three facets with a combination
of policies that intelligently manages customer server pools, a
backup server pool, and hot spare servers.

5.1 Server Pool Selection

When a customer requests an instance of a specific size, e.g. small
server, SpotCheck must make trade-offs between cost, stability, and
the frequency of concurrent revocations. That is, SpotCheck ideally
would allocate stable server resources at cheap prices and avoid
any customer losing significant (or all of their) spot servers at once.
To satisfy such a requirement, SpotCheck makes a sequences of
decisions by taking into account both a spot server’s price history
and a customer’s existing spot allocation.

The first decision is which type of servers to request from the
native IaaS cloud platform. In the simplest case, when a customer
requests a new VM of a certain type, SpotCheck satisfies the
request by allocating a native VM of the same type from the
underlying IaaS platform, and then configures a nested VM within
the native VM for use by the customer. Since nested virtualization
supports the ability to run multiple nested VMs on a single host
VM, SpotCheck also has the option of i) requesting a larger native
VM than the one requested by the customer, ii) slicing it into
smaller nested VMs of the requested type, and then iii) allocating
one of the nested VMs to the customer. Slicing a native VM into
smaller nested VMs is useful, since prices for spot servers of
different types vary based on market-driven supply and demand.
By default, SpotCheck supports the slicing mode which allows a
wider selection of spot markets and minimizes cost by exploiting
price differences between markets.

Presented with a set of spot markets to choose from, SpotCheck
employs three different policies in choosing the spot server type.

5

The first strategy, referred to as cheapest-first, is a simple greedy
policy that chooses the cheapest spot server, based on the current
prices, to satisfy a request. We exploit the fact that the server
size-to-price ratio is not uniform: a large server, say a m3.large,
which is able to accommodate two medium VM servers of size
m3.medium may be cheaper than buying two medium servers.
Since the pricing of on-demand servers is roughly proportional
to their resource allotment, such that a server with twice the
CPU and RAM of another costs roughly twice as much, under
ideal market conditions, the price of spot servers should also be
roughly proportional to their resource allotment. However, we have
observed that different server types experience different supply and
demand conditions. In general, smaller servers appear to be more
in demand than larger servers because their spot price tends to be
closer to their on-demand price. As a result, larger servers are often
cheaper, on a unit cost basis, than smaller server for substantial
periods of time, which enables SpotCheck’s greedy approach to
exploit the opportunity for arbitrage. However, note that whenever
SpotCheck slices a spot server into multiple nested VMs, it does
incur additional risk, as a revocation requires migrating all of its
resident nested VMs.

An alternative to the greedy cheapest-first strategy above is
a conservative stability-first policy that allocates a native spot
server (from the various possible choices) with the most stable
prices. To increase availability, SpotCheck must reduce both the
frequency of revocation events and the impact of each one, e.g.,
due to downtime. Allocating a spot server with a stable market
price reduces the probability of a spot server revocation, which in
turn increases availability.

Both cheapest-first and stability-first strategies do not consider
the existing allocation of a customer’s spot servers. Such strategies
might be problematic when a customer’s spot instances all belong
to a single server pool, incurring concurrent revocations upon price
spikes. A revocation event due to a price spike for a particular
type of spot server can cause concurrent revocations within a
single spot pool. However, different pools are independent, since
spot prices of different server types fluctuate independently of
one another and are uncorrelated, as seen in Figures 6(c) and (d).
Hence, SpotCheck also supports a more sophisticated policy that
bounds the maximum concurrent revocations per customer, defined
as r, by distributing a customer’s nested VMs across multiple
pools. Revocation storms degrade nested VM performance and
increase downtime by overloading backup servers, which must
simultaneously broker the migration of every revoked nested VM.
SpotCheck employs this policy to reduce the risk of a sudden price
spike causing mass revocations of spot servers of a particular type
at one location (or availability zone in EC2 parlance).

The key idea of this bounded greedy algorithm is to first identify
the cost and stability ranges using cheapest-first and stability-first
strategies, and then search for a specific spot server type that
has cost and stability within the above ranges without violating
concurrent threshold r. SpotCheck also favors the spot server type
that incurs fewer concurrent revocations, i.e. smaller instances,
as a tie breaker. This tie breaker is beneficial because it allows
SpotCheck to maintain a reasonable amount of sliced servers, in
case of customer shortage. Further, SpotCheck sets up a threshold of
maximum number of concurrent revocations allowed, constraining
the candidate server types.

5.2 Reducing Revocation Risks using Bidding

Once a spot market has been decided for a VM, SpotCheck must
determine a bid price. Although SpotCheck has no control over
the fluctuating price of spot servers, it does have the ability to
determine a maximum bid price it is willing to pay for servers in
each of its spot pools. Designing “optimal” bidding strategies in
spot markets in various contexts is an active research area, and prior
work has proposed a number of different policies [11], [20], [37].
Adapting these policies to SpotCheck’s context may be possible.
However, since our focus is on designing a derivative IaaS cloud,
rather than bidding strategies, SpotCheck currently employs one
of two simple policies: either place a single bid or bid at multiple
different prices for a specific server type.

5.2.1 Single-level Bidding

With the single bid policy, SpotCheck picks a single bid price for
every spot pool. The bid is chosen to minimize the expected cost
of running on the spot instances and on-demand instances due to
the revocation. A low bid implies a higher revocation rate and
more time spent running on on-demand servers, and thus nullifies
the lower average spot price. Similarly, a high bid price reduces
revocations, but results in increased spot instance costs. In order to
balance the tradeoff, SpotCheck finds a biding price b∗ that is at
the “knee” point of the revocation probability curve. Put simply,
a “knee” point appears when the probability curve flattens out and
can be found by calculating the local maxima of the curve.

In the case of EC2’s spot market, empirical data shows that
the probability of revocation decreases with higher bid prices, but
it flattens quickly, such that the “knee” of the curve, as depicted
in Figure 6(a), is slightly lower than the on-demand price. Thus,
simply bidding the on-demand price is an approximation of bidding
an “optimal” value that is equal to the knee of this availability-bid
curve. This implies that large price spikes are the norm, with spot
prices frequently going from well below the on-demand price to
well above it, as shown in Figure 6(b). Figure 6(a) also shows
that the spot prices are extremely low on average compared to the
equivalent prices for on-demand servers. This is likely due to the
complexity of modifying applications to effectively use the spot
market, which suppresses demand by limiting spot servers to a
narrow class of batch applications.

The cost-optimal bidding level can be found with the following
model. Given n customers, each with Ci servers, SpotCheck must
provision a total of V = ∑

n
i Ci nested VMs. Since SpotCheck maps

these V nested VMs onto multiple pools, the total cost L of renting
native servers from the IaaS platform is equal to the cost of the
necessary spot servers plus the cost of the necessary on-demand
servers plus the cost of any backup servers. Thus, the amortized
cost per nested VM is L/V .

We represent the expected cost of running a spot server with a
bid b as E[c(b)] and it is:

E[c(b)] = (1− p) ·E[cspot(b)]+ p · cod + ε (1)

where p denotes the probability of a revocation when it resides
on a spot server, E[cspot(b)] denotes the average price of the spot
server at a bid b, and cod denotes the price of the equivalent on-
demand server. We note that p is simply the probability of the
spot price rising above the bid price, i.e., p = P(cspot(b) > bid),
which is given by the cumulative distribution shown in Figure 6(a)
that we derive empirically for different spot pools. Finally, the
additional small constant cost, ε denotes the amortized cost to

6

 On-demand-price
 Spot-price

(a) CDF of prices

100 101 102 103 104 105 106

Log Percentage Price Jump (hourly)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

increasing

decreasing

(b) Price changes are large

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

Zone IDs

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Z
o
n

e
 I

D
s

−1.0

−0.5

0.0

0.5

1.0

(c) Correlations of prices be-
tween zones.

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

Type IDs

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

T
yp

e
 I

D
s

−1.0

−0.5

0.0

0.5

1.0

(d) Correlations between in-
stance types.

Fig. 6. Price dynamics across EC2 spot markets from April to October 2014 for all m3.* types: the spot price distribution (a) has a long tail, (b)
exhibits large price changes, and (c) is uncorrelated across locations and server types (d).

run the backup servers. A single backup server with cost cb can
be shared by multiple (N) VMs, yielding ε = cb/N. SpotCheck’s
optimized backup server design can support upto 40 VMs, and thus
the extra cost associated with backup servers is quite small.

The expected costs can be calculated for any bid level, and
only requires availability and price information, both of which
are obtained using the publicly available price traces published by
Amazon. In order to find the optimum bid level b∗ which minimizes
E[C(b)] in Equation 1, a simple numerical search using gradient
descent is used to find the minima and the associated bid level. This
operation is performed only once per spot market, and is re-run
only upon significant price changes.

To compute a nested VM’s availability, assume that the market
price of a spot server changes once every T time units, such that
the server will be revoked once every T/p time units, yielding
a revocation rate of R = p/T . Here, we assume live migration
does not result in significant downtime, while bounded-time VM
migration incurs the downtime required to i) read sufficient memory
state after a lazy restoration, ii) attach a networked disk volume to
the new server, and iii) reassign the IP address to the new server.
If D denotes the delay to perform these operations, the downtime
experienced by the nested VM is D ·R per unit time, i.e., D · p/T .

Thus, our expected cost equation above allows us to analyze
different pool management and bidding policies. This expected
cost includes the cost of running the nested VM on either a spot
or on-demand server, and the cost of any backup servers. We also
assume that nested VMs use an associated EBS volume in EC2
to provide persistent network-attached storage. However, we do
not include storage costs, since they are negligible at the backup
server, and thus the same when using SpotCheck or the native IaaS
platform. Similarly, our analysis does not include costs associated
with external network traffic, since these costs are the same when
using SpotCheck or the native IaaS platform. Note that there is
no cost in EC2 associated with the network traffic between nested
VMs and their backup server, since network traffic between EC2
servers incurs no charge.

5.2.2 Multi-level Bidding

Alternatively, SpotCheck also supports multi-level bidding within
a spot market. The goal of this bidding strategy is to reduce the
number of concurrent revocations and thus mitigate the occurrence
of revocation storms. Bidding at multiple levels means that a price
increase does not necessarily affect all the servers in a market.
We use a simple, two-level bidding strategy wherein we have a
low and a high bid. Servers are randomly placed either in the low
bid pool or the high bid pool. A spot price increase is going to
affect the low-bid servers first and cause them to be revoked; it

only affects the high-bid servers when the price crosses the high
bid, which may happen after a small delay as the price ramps up,
or may not happen at all. Of course, a sudden increase in price
above the high-bid mark will cause all the servers to be revoked
simultaneously. If the gap between revocation of the low and high
bid servers is large enough, then the impact of the revocation storm
is reduced, because the backup server will have to bear the brunt
of only half the number of concurrent migrations. Additionally,
requesting a smaller number of on-demand servers may also reduce
the latency of server acquisition [25].

Our two-level bidding strategy is as follows. The low-bid is set
to the on-demand price (as before), and then we use a numerical
search approach to find the high-bid. Servers are equally and
randomly distributed among the two bid levels. Just like in single
level bidding, there is a tradeoff between the bid and the cost. A
bid higher than the on-demand price means that we are ready to
pay that price, and thus bidding too high is not cost optimal.

Therefore, when choosing the bid levels, we seek to minimize
the i) revocation storm size and ii) expected cost. In single level
bidding, a revocation storm affects all n of the servers in that market.
With two-level bidding, some storms affect only n/2 servers, and
thus their impact is said to be mitigated. We thus use the fraction
of revocation storms mitigated, fr as a metric. A storm is mitigated
if the gap between revocation of high and low bid servers is at
least th. Once the th threshold is crossed, the high and low bid
revocations will not be simultaneous because the backup server
will have finished lazily restoring the VMs. Based on experimental
analysis, we set th = 10 minutes.

Since the low-bid is fixed (equal to on-demand price), we use
a simple numerical search for the high-bid which maximizes the
fraction of revocation storms mitigated, fr, such that the increase
in cost stays under a threshold. Thus, we have the constraint:
E[cr] ≤ α ·E[C], where E[C] is the expected cost for the single-
level bidding policy. Expectations for both fr,cr are obtained by
using historical price traces, and we use an α = 0.2, i.e., we limit
the increase in cost to 20%. The upper bound on the search for the
high-bid is enforced by Amazon, which limits the maximum bid to
be 10 times the on-demand price.

5.3 Reducing Concurrent Revocations with Backup
Servers

After requesting spot servers from the native IaaS platform,
SpotCheck must assign each nested VM within a spot pool to
a distinct backup server. SpotCheck also distributes nested VMs in
a spot pool across multiple backup servers. The task of assignning
VMs to backup servers is analogous to VM placement and server
consolidation [27] where the goal is to pack VMs onto a minimum

7

number of physical servers.
Since each spot pool is subject to concurrent revocations,

spreading one pool’s VMs across different backup servers reduces
the probability of any one backup server experiencing a large
number of concurrent revocations. The approach also spreads the
read and write load due to supporting bounded-time VM migration
across multiple backup servers. To this end, SpotCheck employs a
round-robin policy to map the nested VMs within each pool across
the set of backup servers. With the round-robin policy, SpotCheck
simply assigns each nested VM to the next available backup server2.
If any backup server becomes fully utilized, SpotCheck provisions
a native VM from the IaaS platform to serve as a new backup
server, and adds it to the backup server pool. A backup server in
SpotCheck can host multiple(N = 40) VMs, and may not always be
fully utilized. The under-utilization can occur because VM arrivals
and lifetimes are dynamic, and SpotCheck does not have apriori
knowledge about VM creation/termination requests which it can
use to provision the minimum number of backup servers.

SpotCheck’s round-robin policy might lead to unbalanced
backup servers in terms of concurrent revocations. The optimal
mapping from spot servers to backup servers to minimize the
maximum number of concurrent revocations can be formulated
as an integer linear program (ILP). Let N spot servers be belong
to different spot pools (S), and pis denotes the mapping between
servers and server-pools. The backup servers are denoted by M, and
their capacity is denoted by U . Our goal is to find such an optimal
mapping X for every spot server, where xi j denotes assignment of
server i to backup j. We can then represent the number of concur-

rent revocations cr j of jth backup server: cr j = argmax
s∈S

m
∑

i=0
psixi jwi.

Intuitively, cr j is defined by the largest server pool hosted. We
define revocation storm severity to be the maximum concurrent
revocations on any backup server cr = max

j
cr j. Our objective is to

minimize cr with the following constraints:
∑
i∈N

wixi j ≤U ∀ j ∈M (2)

∑
j∈M

xi j = 1 ∀i ∈ N (3)

xi j ∈ {0,1} ∀i ∈ N, j ∈M

Constraint 2 ensures no backup servers will be overloaded and
the other constraints make sure all spot servers are assigned to only
one backup server. This ILP can be solved by an off-the-shelf solver
like CPLEX. However, this ILP formulation requires remapping
of VMs to backup servers periodically, and is not feasible in the
current SpotCheck implementation. We develop an online version
of this backup assignment which doesn’t require remappings below.
Online greedy backup assignment policy. The round-robin policy
discussed earlier does not try to minimize the number of concurrent
revocations, and the ILP formulation is an offline approach. We
have developed an online policy (called online-greedy) which seeks
to minimize the number of concurrent revocations, and can be run
dynamically as VMs are launched.

The online-greedy policy runs after a VM has been assigned to
a server pool i. It places the VM into a backup server which has
the least number of VMs from pool i, and which still has capacity
available to host one more VM. Since the number of concurrent

2. A backup server is not necessary for running stateless services e.g., a
single web server that is part of a tier of replicated web servers, since these
services are designed to tolerate failures. However, as with any IaaS platform,
SpotCheck does not make any assumptions about applications that run on it,
and may incur slightly higher costs than necessary for stateless services.

revocations is simply the number of VMs from the same pool, by
picking the backup server with the smallest number of VMs from
that pool, the backup servers are not overloaded with VMs from
the same pool. Thus, the online-greedy policy seeks to equalize the
number of VMs from each pool across all the backup servers.

5.4 Reducing Downtime with Hot Spares

When the market price rises above the bid price, the IaaS platform
revokes all servers within a pool at the same time, resulting in
a revocation storm. A simple approach to handling concurrent
revocations is to request an equivalent number of on-demand
servers from the IaaS platform and migrate each nested VM to a
new on-demand server. However, requesting new servers in a lazy
fashion when necessary is only feasible if the latency to obtain them
is smaller than the warning period granted to a revoked server. Note
that there is never a risk of losing nested VM state, since the backup
server stores it even if there is not a destination server available to
execute the nested VM. For example, empirical studies have shown
that it takes up to 90 seconds to start up a new on-demand server
in EC2 [25], while the warning period for a spot server is two
minutes, which leaves only 30 seconds to migrate the spot servers
state to the new server. If the allocation latency were to exceed the
warning time, such a lazy strategy is not possible due to the risk
of significant VM downtime. To handle this scenario, SpotCheck
proactively acquires a pool of hot spares, servers that are ready to
receive nested VMs from revoked spot servers immediately without
waiting for a new server to come online. While reducing the risk
of downtime, hot spares inevitably increase SpotCheck’s overhead
cost. Therefore, it is important to only maintain a necessary amount
of hot spare servers.

SpotCheck’s hot-spare policy seeks to ensure that a small
fraction of VMs affected by a revocation storm have a stand-by on-
demand server. If the expected maximum number of simultaneous
revocations is E[RM], then we deploy β ·E[RM] hot spares. Thus
the cost of the hot spares is proportional to the simultaneous
revocations, which in turn is a result of pool management and
bidding policy. For example, we can set β = 0.1, which means
that 10% of VMs migrating face minimal downtime, while the
rest could potentially be affected due to the delay in acquiring
on-demand servers from the native IaaS. The hot-spare pool is
replenished after the hot spares are used up during migrations.

An alternative approach to using dedicated hot spares is to
use existing servers in other stable pools as staging servers. This
approach is attractive if these existing servers are not fully utilized
by the nested VMs. Here, the staging servers only run the nested
VMs from a revoked spot server temporarily, while SpotCheck
makes concurrent requests for new on-demand or spot servers to
serve as the final destination. This strategy doubles the number
of migrations and the associated overhead, but it also enables the
system to reduce risk without increasing its costs. Hot spares and
staging servers may also serve as a temporary haven for displaced
spot VMs, in the rare case when requests for on-demand servers
fail because they are unavailable from the IaaS platform3.

5.5 Providing Security Isolation using VPCs

By default, SpotCheck VMs share the cloud servers (using nested
virtualization) and the backup servers with different VMs belonging
to other customers. This sharing may reduce both the performance
and security isolation among VMs. To provide improved isolation,

3. IaaS platforms attempt to provision resources to stay ahead of the demand
curve, but they may run out of on-demand servers if demand exceeds supply.

8

SpotCheck also provides a Private Cloud mode, which removes
sharing of cloud servers and backup servers between different
customers.

In private cloud mode, SpotCheck does not place different
customers’ VMs on the same cloud server, but instead provides
a dedicated VPC to each customer to improve network isolation.
More importantly, VMs which run in this mode have their own
dedicated backup servers. All the bidding, pool management, and
other policies are still applicable in this mode, and the VMs among
different VPCs do not interact in any way. The key difference is
the non-sharing of backup servers, which prevents VMs from one
user from interfering with other users’ VMs. Multiple VMs sharing
a backup server amortizes the backup server cost among them, and
in the private cloud mode, the number of VMs run by a customer
may not be large enough to completely pack the backup servers.
This under-utilization backup servers increases the cost of running
in private cloud mode if the number of VMs is small. Thus, the
private cloud mode provides increased isolation, at a potentially
higher cost, which is a function of the number of VMs that a
customer is running in this mode. While we use a relatively large
and powerful backup server (m3.xlarge) which can service up
to 40 VMs, it may be excessive for smaller private clouds. If the
number of customer VMs is significantly less than 40, SpotCheck
automatically chooses progressively smaller and cheaper backup
servers. For example, 20 VMs can be serviced by the m3.large
server type, at half the cost of the extra large server. Note that the
ratio of computing and storage resources on the backup servers
to the multiplexing factor remains the same, and the performance
of VMs in the private cloud mode is unaffected. This allows the
private cloud mode to be cost feasible even at small sizes.

While the above private cloud mode provides isolation, it can
also result in higher costs for customers with low VM requirements.
To address this, SpotCheck also offers a VPC-only mode, which
provides VPCs to customers but shares backup servers among
VPCs. The VPCs provide network isolation, and the shared backup
servers remove the cost overhead. Thus, foregoing the backup
server isolation results in lower costs. Backup servers can be
shared among VPCs by EC2’s VPC-peering mechanism.

5.6 Arbitrage Risks

One caveat in our analysis is that we do not consider the second-
order effects of our system on spot prices and availability. While
it is certainly possible that widespread use of SpotCheck may
perturb the spot market and affect prices, our analysis assumes that
the market is large enough to absorb these changes. Regardless,
our work demonstrates that a substantial opportunity for arbitrage
exists between the spot and on-demand markets. Consumers have
a strong incentive to exploit this arbitrage opportunity until it no
longer exists. SpotCheck also benefits EC2, since it should raise
the demand and price for spot servers by opening them up to a
wider range of applications.

The increasing popularity and demand of derivative clouds
might also incentivize IaaS platforms to increase their pool of spot
servers. However, our analysis assumes that on-demand servers of
some type will always be available. While on-demand servers
of a particular type may become unavailable, we assume the
market is large enough, so that on-demand servers of some type
are always available somewhere. As we discuss, SpotCheck’s
pool management strategies operate across multiple markets by
permitting the unrestricted choice of server types and availability
zones (within a region). These strategies protect against the rare

event where one type of on-demand server becomes unavailable.
Of course, regardless of the risk mitigation strategies above,

SpotCheck cannot provide higher availability than the underlying
IaaS platform. For example, if the IaaS platform fails or becomes
disconnected, as occasionally happens to EC2 [16], SpotCheck
would also fail. Since we do not have access to long-term
availability data for EC2 or other IaaS platforms, in our experiments,
the term “availability” refers to relative availability with respect to
the underlying IaaS platform, which we assume is 100% available.

6 SPOTCHECK IMPLEMENTATION

We implemented a prototype of SpotCheck on EC2 that is capable
of exercising the different policy options from the previous section,
allowing us to experiment with the cost-availability tradeoffs from
using different policies. SpotCheck provides a similar interface as
EC2 for managing virtualized cloud servers, although the servers
are provisioned in the form of nested VMs.
SpotCheck Controller. SpotCheck’s main component is the cen-
tralized controller which is implemented in python. It interfaces
between customers and the underlying native IaaS platform. It
runs on a dedicated server and maintains a global and consistent
view of SpotCheck’s state, e.g., the information about all of its
provisioned spot and on-demand servers and all of its customers’
nested VMs and their location. We do not include controller costs
in our estimates, since we expect them to be negligible, as they are
amortized across all the VMs.

Customers interact with SpotCheck’s controller via an API that
is similar to the management API EC2 provides for controlling
VMs. Internally, the controller uses the EC2 REST APIs to
issue requests to EC2. The controller monitors SpotCheck’s state
by tracking the cloud server each nested VM runs on, the IP
address associated with the nested VM, and the customer’s access
credentials, and stores this information in a database.

The controller also implements the various pool management
strategies from the previous section, e.g., by determining the bids
for spot instances and triggering nested VM migrations from one
server pool to another. Finally, the controller monitors the nested
VMs, the mapping of nested VMs to backup servers, and the
current spot price in each spot pool. Our prototype implementation
uses the XenBlanket [35] nested hypervisor running on a modified
version of Xen 4.1.1. The driver domain (dom-0) runs Linux
3.1.2 with modifications for supporting XenBlanket. XenBlanket
is compatible with all EC2 instance types that support hardware
virtual machines (HVM). VMs use network-attached EBS volumes
to store the root disk and any persistent state. The nested hypervisor
consumes minimal CPU and memory (< 200 MB) resources,
and the resultant nested VMs have slightly reduced memory size
compared to the native IaaS VM. We account for any performance
degradation due to the overhead of nested virtualization as well
as the reduced resource availability for the nested VMs when
computing the cost of the nested VMs in Section 7.2.

To implement SpotCheck, we modified XenBlanket to support
bounded-time VM migration in addition to live migration. We adapt
the bounded-time VM migration implemented in Yank [30] for use
with nested virtualization and implement additional optimizations
to reduce downtime during migration. In particular, the continuous
checkpoints due to bounded-time VM migration guarantee that
during the last checkpoint the nested VM is able to transfer the
stale state within the warning time. SpotCheck configures nested
VMs running on spot servers to use bounded-time VM migration,
while those mapped to an on-demand pool use live migration.

9

Nested VMs mapped to a spot server pool are also mapped to
a backup server, which must process a write-intensive workload
during normal operation and must process a workload that includes
a mix of reads and writes during revocation events, e.g., to read the
memory state of a revoked nested VM and migrate it.

During revocations, the backup server prepares for nested VM
restoration by loading images into memory. In addition, we also
implement bandwidth throttling using tc on a per-VM basis to
limit the network bandwidth used for each migration/restoration
operation, and to avoid affecting nested VMs that are not migrating.
Thus, we optimize our backup server implementation for the
common case of efficiently handling a large number of concurrent
revocations without degrading performance for long durations. Our
SpotCheck prototype uses the m3.xlarge type as backup servers,
since they currently offer the best price/performance ratio for our
workload mix. Our prototype uses a combination of SSDs and EBS
volumes to store the memory images.

Lazy restoration requires transferring the “skeleton” state of a
VM, comprising the vCPU state, all associated VM page tables, and
other hardware state maintained by the hypervisor, to the destination
host and immediately beginning execution. This skeleton state is
small, typically around 5MB, and is dominated by the the size of
the page tables. The skeleton state represents the minimum amount
of state sufficient for the hypervisor on the destination host to
create the domain for VM and begin executing instructions. The
missing memory pages, which reside on the backup server’s disk,
are mapped to the domain’s memory when available and the VM
resumes execution. A background process concurrently pre-fetches
the remaining unrestored pages for faster restoration.

We conducted extensive measurements on EC2 to profile the
latency of SpotCheck’s various operations. Table 1 shows the results
for one particular server type, the m3.medium. Our measurements
show that EC2 provides an opportunity to gracefully shutdown the
VM, by issuing a shutdown command, before forcibly terminating
the VM two minutes after issuing the shutdown. Thus, we replace
the default shutdown script with our own script, which EC2 invokes
upon revocation to notify SpotCheck of the two minute warning.
However, as we mention previously, as of January 2015 [9], EC2
now provides an explicit two minute notification of shutdown
through the EC2 management interface.

When employed natively our live bounded-time VM migration
incurs a brief millisecond-scale downtime similar to that of a post-
copy live migration. However, Table 1 shows that EC2’s operations
also contribute to downtime. In particular, SpotCheck can only
detach a VM’s EBS volumes and its network interface after the
VM is paused, and it can only reattach them after the VM is
resumed. From Table 1, these operations (in bold) cause an average
downtime of 22.65 seconds. While significant, this downtime is not
fundamental to SpotCheck: EC2 and other IaaS platforms could
likely significantly reduce the latency of these operations, which
would further improve the performance and availability we report in
Section 6. Even now, this ∼23 second downtime is not long enough
to break TCP connections, which generally requires a timeout of
greater than one minute.

Finally, SpotCheck’s implementation builds on our prior work
on Yank [30] by including the performance optimizations above.
In particular, these optimizations enable i) SpotCheck’s backup
servers to support a much larger number of VMs and ii) lazy
on-demand fetching of VM memory pages to drastically reduce
restoration time, e.g., to <0.1 seconds. We quantify the impact of
these optimizations on cost, performance, and availability.

TABLE 1
Latency for various SpotCheck operations on EC2 for the m3.medium

server type across 20 measurements over a one week period.
Median(sec) Mean(sec) Max(sec) Min(sec)

Start spot instance 227 224 409 100
Start on-demand instance 61 62 86 47
Terminate instance 135 136 147 133
Unmount and detach EBS 10.3 10.3 11.3 9.6
Attach and mount EBS 5 5.1 9.3 4.4
Attach Network interface 3 3.75 14 1
Detach Network interface 2 3.5 12 1

7 EVALUATION

Our evaluation consists of a mix of end-to-end experiments and sim-
ulations. For our end-to-end experiments, we quantify SpotCheck’s
performance under different scenarios using a combination of EC2
servers and our own local servers. For our simulations, we combine
performance measurements from our end-to-end experiments with
historical spot pricing data on EC2 to estimate SpotCheck’s cost
savings and availability at scale over a long period. We run all the
microbenchmark experiments in a single EC2 availability zone,
while our simulations include cross-availability zone experiments
within a single region.

XenBlanket requires servers with have HVM capabilities,
and we primarily use m3.* server types. In particular, we use
m3.xlarge server types for our backup servers, and, by default,
host nested VMs on m3.medium server types. We evaluate
SpotCheck using two well-known benchmarks for interactive multi-
tier web applications: TPC-W [3] and SPECjbb2005 [2]. We are
primarily interested in memory-intensive workloads, since the
continuous checkpointing of memory pages imposes the most
performance overhead for these workloads.
TPC-W simulates an interactive web application. We use Apache
Tomcat (v6.26) as the application server and MySQL (v5.0.96)
as the database. We configure clients to perform the “ordering
workload” in our experiments.
SPECjbb is a server-side benchmark that is generally more
memory-intensive than TPC-W. The benchmark emulates a three-
tier web application, and particularly stresses the middle application
server tier when executing the test suite.

All nested VMs run the same benchmark with the same
30 second time bound for bounded-time migration, which we
choose conservatively to be significantly lower than the two
minute warning provided by EC2. Thus, our cost and availability
results are worse than possible if using a more liberal time bound
closer to the two minute warning time. In our experiments, we
compare SpotCheck against i) Xen’s pre-copy live migration, ii)
an unoptimized bounded-time VM migration that fully restores a
nested VM before starting it (akin to Yank [30]), (iii) SpotCheck’s
optimized Full restore, iv) an unoptimized bounded-time VM
migration that uses lazy restoration, and finally v) SpotCheck’s
optimized bounded-time VM migration with lazy restoration.

7.1 End-to-End Experiments

SpotCheck uses a backup server to checkpoint VM state and
support bounded-time VM migration. SpotCheck’s cost overhead
is primarily a function of the number of VMs each backup server
multiplexes: the more VMs it multiplexes on a backup server, the
lower its cost. Figure 7 shows the effect on nested VM performance
for SpecJBB and TPC-W as the load on the backup server increases.
First, we evaluate the overhead of continuously checkpointing
memory and sending it over the network to the backup server. The
“0” and “1” columns in Figure 7 represent performance difference
between no checkpointing and checkpointing using a dedicated

10

01 10 20 30 40 50
Num. VMs per backup server

0
2000
4000
6000
8000

10000
12000

Th
ro

ug
hp

ut
 (b

op
s)

SpecJBB Throughput

01 10 20 30 40 500
5

10
15
20
25
30
35
40

Re
sp

on
se

 ti
m

e
(m

s)

TPC-W response time

Fig. 7. Effect on performance as the number of nested VMs backing up
to a single backup server increases.

backup server, respectively. By simply turning checkpointing
on and using a dedicated backup server, we see that TPC-W
experiences a 15% increase in response time, while SpecJBB
experiences no noticeable performance degradation during normal
operation. With an increasing number of nested VMs all backing
up to a single server, saturation of the disk and network bandwidth
on the backup server leads to a decrease in nested VM performance
after 35 VMs, where SpecJBB throughput decreases and TPC-W
response time increases significantly, e.g., by roughly 30% each.
Note that the nested VM incurs this performance degradation as
long as it is running on a spot server. Thus, to ensure minimal
performance degradation during normal operation, SpotCheck
assigns at most 35-40 VMs per backup server. As a result,
SpotCheck’s cost overhead for backing up each nested VM is
roughly 1/40 = 2.5% of the price of a backup server. For our
m3.xlarge backup server, which costs $0.28 per hour in the
East region of EC2, the amortized cost per-VM across 40 nested
VMs is $0.007 or less than one cent per VM.

In addition to performance during normal operation, spot server
revocations and the resulting nested VM migrations and restorations
impose additional load on the backup server. Figure 8 shows the
length of the period of downtime or performance degradation
when migrating nested VMs via the backup server. In this case, we
compare migrations that utilize lazy restoration with those that use a
simple stop-and-copy migration. A stop-and-copy approach results
in high downtime, whereas a lazy restore approach results in much
less downtime but some performance degradation when memory
pages must be fetched on-demand across the network on their
first access. Since lazy restore incurs less downtime, it reduces the
effect of migrations on interactive applications. Figure 8 shows that
when concurrently restoring 1 and 5 nested VMs the time required
to complete the migration is similar for both lazy restoration and
stop-and-copy migration, which results in performance degradation
or downtime, respectively, over the time window.

However, when executing 10 concurrent restorations, the length
of the lazy restoration is much longer than that of the stop-and-
copy migration. This occurs because lazy restoration uses random
reads that benefit less from prefetching and caching optimizations
than a stop-and-copy migration, which uses sequential reads. This
motivates SpotCheck’s lazy restoration optimization that uses the
fadvise system call to inform the kernel how SpotCheck will use
the VM memory images stored on disk, e.g., to expect references
in random order in the near future. The optimization results in a

1 5 10
Num. VMs being concurrently restored

0
100
200
300
400
500

Do
w

nt
im

e
(s

ec
)

Unoptimized Full restore
SpotCheck Full restore

(a) Duration of downtime with Full restore

1 5 10
Num. VMs being concurrently restored

0
200
400
600
800

1000
1200

De
gr

ad
ed

 P
er

fo
rm

an
ce

 (s
ec

)

Unoptimized Lazy restore
SpotCheck Lazy restore

(b) Duration of degraded performance with Lazy restore

Fig. 8. Duration of downtime during a traditional VM restore, and
performance degradation during a lazy restore.

0 1 5 10
Num. VMs being concurrently lazily restored

0
10
20
30
40
50
60
70

Re
sp

on
se

 ti
m

e
(m

s)

TPC-W response time

Fig. 9. Effect of lazy restoration on VM performance.

significant decrease in the restoration time for lazy restore. Thus,
SpotCheck’s optimizations significantly reduce the length of the
period of performance degradation during lazy restorations. Of
course, SpotCheck also assigns VMs to backup servers to reduce
the number of revocation storms that cause concurrent migrations.

In addition to the time to complete a migration, SpotCheck also
attempts to mitigate the magnitude of performance degradation dur-
ing a migration and lazy VM restoration. During the lazy restoration
phase the VM experiences some performance degradation, which
may impact latency-sensitive applications, such as TPC-W. Since
the first access to each page results in a fault that must be serviced
over the network, lazy restoration may cause a temporary increase
in application response time. Figure 9 shows TPC-W’s average
response time as a function of the number of nested VMs being
concurrently restored, where zero represents normal operation. The
graph shows that when restoring a single VM the response time
increases from 29ms to 60ms for the period of the restoration.
Additional concurrent restorations do not significantly degrade
performance, since SpotCheck partitions the available bandwidth
equally among nested VMs to ensure restoring one VM does not
negatively affect the performance of VMs using the same backup
server. Note that SpotCheck’s policies attempt to minimize the
number of evictions and migrations via pool management, and thus
the performance degradation of applications during the migration
process is a rare event. Even so, our evaluation above shows that
application performance is not adversely affected even when the
policies cannot prevent migrations.
Result: SpotCheck executes nested VMs with little performance
degradation and cost overhead during normal operation using a
high VM-to-backup ratio and migrates/restores them with only a
brief period of performance degradation.

11

TABLE 2
SpotCheck’s customer-to-pool mapping policies.

Policy Description
1P-M VMs mapped to a single m3.medium pool
2P-ML VMs equally distributed between two pools :

m3.medium and m3.large.
4P-ED VMs equally distributed to four pools consisting

of four m3 server types
4P-COST VMs distributed based on past prices. The lower

the cost of the pool over a period, the higher the
probability of mapping a VM into that pool.

4P-ST VMs distributed based on number of past migra-
tions. The fewer the number of migrations over
a period, the higher the probability of mapping
a VM into that pool.

7.2 SpotCheck Policies and Cost Analysis

As we discuss in Section 4, SpotCheck may employ a variety of
bidding and VM assignment policies that tradeoff performance and
risk. Here, we evaluate SpotCheck’s cost using various bidding
policies based on the EC2 spot price history from April 2014 to
October 2014. In particular, Table 2 describes the policies we use
to assign VMs to spot pools. The simplest policy is to place all
VMs on servers from a single spot market (1P-M); this policy
minimizes costs if SpotCheck selects the lowest price pool, but
increases risk, since it may need to concurrently migrate all VMs if
a price spike occurs. We examine two policies (2P-ML and 4P-ED)
that distribute VMs across servers from different spot markets to
reduce risk, albeit at a potentially higher cost. We also examine two
policies (4P-COST and 4P-ST) that probabilistically select pools
based on their weighted historical cost, or their weighted historical
price volatility. The former lowers cost, while the latter reduces
performance degradation from frequent migrations.

Figure 10 shows SpotCheck’s average cost per hour when using
each policy. As expected, the average cost for running a nested
VM using live migration, i.e., without a backup server, is less than
the average cost using SpotCheck, since live migration does not
require a backup server. Of course, using only live migration is not
practical, since, without a backup server, SpotCheck risks losing
VMs before a live migration completes. In this case, 1P-M has
the lowest average cost, since SpotCheck maps VMs to the lowest
priced spot pool. Distributing VMs across two (2P-ML) and then
four (4P-ED) pools marginally increases costs. The two policies
that probabilistically select pools based on either their historical
cost or volatility have roughly the same cost as the policy that
distributes across all pools. Note that the average cost SpotCheck
incurs for the equivalent of an m3.medium server type is ∼$0.015
per hour, while the cost of an m3.medium on-demand server type
is $0.07, or a savings of nearly 5×.

SpotCheck runs VMs using nested virtualization, which can
have significant performance impact. Xen-blanket’s performance
overhead (relative to single-level virtualization) is highly workload
dependent [18], [35], and ranges from 0-68% depending on whether
the workload is CPU or I/O bound. Thus, the performance of some
SpotCheck VMs is reduced to about half of the native cloud
performance. In case the VM’s performance is adversely affected
by nested virtualization, we normalize the cost savings relative to
the performance. Thus for a VM whose performance reduces by
50%, the cost savings are also decreased by 50%—this still yields
worst-case cost savings of about 2.5× compared to on-demand
instances. We note that nested hypervisors are still nascent and
performance optimizations can reduce these overheads.

1P-M 2P-ML 4P-ED 4P-COST 4P-ST
0.00

0.01

0.02

0.03

0.04

0.05

Av
er

ag
e

co
st

 p
er

 h
ou

r (
$) Xen Live migration

Unoptimized Full restore
SpotCheck with Full restore
SpotCheck with Lazy restore

Fig. 10. Average cost per VM under various policies.

1 2 3 4 5
Trace Number

0.0

0.5

1.0

1.5

2.0

Ba
ck

up
 se

rv
er

 c
os

t
 (R

el
at

iv
e

to
 O

pt
im

al
)

Fig. 11. Cost of backup servers relative to optimal packing for the
Eucalyptus cloud traces.

The cost of SpotCheck VMs also depends on the utilization
of the backup servers, since the backup server costs are shared
by all the VMs. Due to the dynamic arrival and lifetimes of VMs,
SpotCheck’s online backup server policy may leave backup servers
under-utilized, and thus increase effective costs. We evaluate the
costs of backup servers using the Eucalyptus cloud workload
trace [7]. Figure 11 shows the backup server costs of SpotCheck’s
backup-server allocation policy relative to the optimal bin-packing
policy which minimizes the number of backup servers. We can see
from Figure 11 that the increase in backup-server costs (compared
to the optimal) ranges from 2% to 65% (for the short trace #5).
This translates to a per-VM cost increase of 1-33% compared to the
full utilization scenario. Taking under-utilization of backup servers
into account, the worst-case cost savings for SpotCheck is still
more than 2× compared to the on-demand instances.

While reducing cost is important, maximizing nested VM
availability and performance by minimizing the number of mi-
grations is also important. Here, we evaluate the unavailability of
VMs due to spot server revocations. For these experiments, we
assume a period of performance degradation due to detaching and
reattaching EBS volumes, network reconfiguration, and migration.
We seed our simulation with measurements from Table 1 and
the microbenchmarks from the previous section. In particular, we
assume a downtime of 23 seconds per migration due to the latency
of EC2 operations. Based on these values and the spot price history,
Figure 12 shows nested VM unavailability as a percentage over the
six month period from April to October for each of our policies.
As above, we see that live migration has the lowest unavailability,
since it incurs almost no downtime, but is not practical, since
it risks losing VM state. We also examine both an unoptimized
version of bounded-time VM migration requiring a full restoration
before resuming (akin to Yank) and our optimized version that also
requires a full restoration. The graph shows that the optimizations
in Section 5 increase the availability. The graph also shows that,
even without lazy restoration, SpotCheck’s unavailability is below
0.25% in all cases, or an availability of 99.75%.

However, we see that using lazy restore brings SpotCheck’s un-
availability close to that of live migration. Since the m3.medium

12

1P-M 2P-ML 4P-ED 4P-COST 4P-ST
0.00

0.05

0.10

0.15

0.20

Un
av

ai
la

bi
lit

y
(%

)

Xen Live migration
Unoptimized Full restore

SpotCheck with Full restore
SpotCheck with Lazy restore

Fig. 12. Unavailability for live migration and SpotCheck (with and without
optimizations and lazy restore).

spot prices over our six month period are highly stable, the 1P-M
policy results in the highest availability of 99.9989%, as well as the
lowest cost from above. This level of availability is roughly 10×
that of directly using spot servers, which, as Figure 6(a) shows, have
an availability between 90% and 99%. The other policies exhibit
slightly lower availability ranging from 99.91% for 2P-ML to 99.8%
for 4P-ED. In addition to availability, performance degradation is
also important. Figure 13 plots the percentage of time over the six
month period a nested VM experiences performance degradation
due to a migration and restoration. The graph shows that, while
SpotCheck with lazy restoration has the most availability, it has the
longest period of performance degradation. However, for the single
pool 1P-M policy, the percentage of time the nested VM operates
under degraded performance is only 0.02%, while the maximum
length of performance degradation (for 4P-ED) is only 0.25%. For
perspective, over a six month period, SpotCheck using the 1P-M
policy has only 2.85 combined minutes of degraded performance
due to migrations and restorations.
Result: SpotCheck achieves nearly 2-5× savings compared to
using an equivalent on-demand server from an IaaS platform,
while providing 99.9989% availability with migration-related
performance degradation only 0.02% of the time.

The cost-risk tradeoff between choosing a single pool versus
two pools versus four pools is not obvious. While, in the ex-
periments above, 1P-M provides the lowest cost and the highest
availability, the risk of SpotCheck having to concurrently migrate
all nested VMs at one time is high, since all VMs mapped to a
backup server are from a single pool. For the six month period
we chose, the spot price in the m3.medium pool rarely rises
above the on-demand price, which triggers the migrations and
accounts for its high availability. The other policies mitigate this
risk by increasing the number of pools by distributing the VMs
across these pools. Since the price spikes in these pools are not
correlated, the risk of losing all VMs at once is much lower.
Table 3 shows the probability of concurrent revocations of various
sizes as a factor of the total number of VMs N. We note that the
probability of all N VMs migrating in a single pool scenario is
higher compared to the two-pool scenario and nearly non-existent
in the case of the four-pool policy. Also, by distributing VMs across
pools, SpotCheck increases the overall frequency of migration, but
reduces the number of mass migrations.
Result: Distributing nested VMs mapped to each backup server
across pools lowers the risk of large concurrent migrations. For
example, comparing 1P-M to 4P-ED, the average VM cost in
4P-ED increases by $0.002 and the availability reduces by 0.15%,
but the approach avoids all mass revocations.

Pool selection policy comparison. Our results demonstrate

1P-M 2P-ML 4P-ED 4P-COST 4P-ST
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pe
rfo

rm
an

ce
 D

eg
ra

da
tio

n
(%

)

Xen Live migration
Unoptimized Full restore

SpotCheck with Full restore
SpotCheck with Lazy restore

Fig. 13. Performance degradation during migration.

TABLE 3
Probability of the maximum number of concurrent revocations for

different pools. N is the number of VMs.
Max. num. of concurrent revocations

N/4 N/2 3N/4 N
1-Pool 0 0 0 1.74×10−4

2-Pool 0 3.75×10−3 0 2.25×10−5

4-Pool 7.4×10−3 7.71×10−5 1.92×10−5 0

that each of SpotCheck’s server pool selection policies provide
similar cost savings (Figure 10) and availability (Figure 12).
Performance degradation is lowest for single-pool policy (1P-M),
but negligible even for the worst-performing policy (4P-ED as
shown in Figure 13), while the four-pool policies drastically reduce
the risk of mass migration events (from Table 3).

7.3 Comparison of Risk Mitigation Policies

Two-level Bidding: To evaluate the impact of two-level bidding,
we use pick two bids and observe the impact on the revocations
and the expected cost. For two-level bidding, the low-bid is the on-
demand price. Thus we keep the low-bid equal to the on-demand
price and vary the high-bid. We are interested in comparing with
the single-level bidding policy, and keep all parameters such as
the workload and other policies constant. The impact of two-
level bidding is shown in Figure 14, which shows the decrease in
revocation storms and increase in cost vs. the high-bid. As the high-
bid increases, the fraction of revocation storms which are mitigated
(only low-bid servers affected) increases upto a limit, after which
it starts to flatten out. Correspondingly, the cost also increases
because of the higher bids. For the m1.2xlarge instance, the
two-level bidding strategy can mitigate almost 60% of revocation
storms with a 20% increase in cost. That is, whenever a revocation
event occurs, it will only affect half of the servers 60% of the time.
Thus, two-level bidding can be an effective strategy to increase the
number of effective pools and mitigate revocation storms.
Backup Selection: The backup server selection policies determine
the load on the backup server during revocations, for which we
measure the number of concurrent revocations faced by each
backup server. During a revocation, the backup server is faced
with increased checkpointing frequency and must provide pages
to the lazy restoration process. An overloaded backup server
servicing a large number of lazy restorations is detrimental to
smooth migrations. Accordingly, we compare the different backup
selection policies in terms of the number of concurrent revocations
in Table 4. For different pool management policies, the impact of
backup selection varies, because the number of pools determines
the “spread” of VMs. We compare the online-greedy policy with
the default round-robin policy. When using a single pool, there is a
slight reduction in the number of concurrent revocations with the
online-greedy policy (2%), whereas the reduction is 18% with 4
pools. Thus, the online-greedy backup selection policy reduces the
concurrent revocation load on the backup servers.

13

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
High-bid ($)

0
10
20
30
40
50
60

%
 R

ev
oc

at
io

n
st

or
m

s m
iti

ga
te

d

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
High-bid ($)

0
5
10
15
20
25
30

Co
st

 in
cr

ea
se

 (%
)

Fig. 14. Two-level bidding reduces impact of revocation storms because
only half the servers are affected. As the high-bid is increased, the
percentage of storms mitigated increases upto a limit, and so does the
cost (compared to single-level bidding).

TABLE 4
Reduction in max number of concurrent revocations with the online

greedy backup server selection, when compared to round-robin.
Num. Spot Pools Reduction in concurrent revocations

1 Pool 2%
2 Pool 13.7%
4 Pool 18.3%

Hot spares: Hot spares are readily available, already running on-
demand servers used to migrate VMs upon a revocation. Hot spares
reduce the downtime during migration, but incur an additional cost,
which is shown in Table 5. For different policies, the number of
simultaneous revocations (size of revocation storm) affects the hot
spare cost, and is lower when the number of markets is larger,
and also when two-level bidding is employed. With a single pool,
having 10% servers as hot spares results in a 50% increase in
expected cost, whereas the overhead of hot spares is only 15%
when using 2 pools and 2-level bidding.
VPC: The cost of running in the private cloud mode is higher
than the default shared mode of operation because the backup
server cost is not shared by a larger number of VMs. The cost
of running VMs in the private cloud mode is shown in Figure 15.
As the private cluster size increases, the cost decreases because
the multiplexing of backup servers increases. SpotCheck is able to
select smaller backup servers for smaller number of VMs, and cost
of running 5 VMs is 40% higher per VM when compared to the
default shared-everything mode.

8 RELATED WORK

Designing Derivative Clouds. Prior work on interclouds [12] and
superclouds [23], [36] propose managing resources across multiple
IaaS platforms by using nested virtualization [10], [35], [41] to
provide a common homogeneous platform. While SpotCheck
also leverages nested virtualization, it focuses on exploiting it
to transparently reduce the cost and manage the risk of using
revocable spot servers on behalf of a large customer base. Our
current prototype does not support storage migration or inter-cloud
operation; these functions are the subject of future work. Cloud
Service Brokers [28], such as RightScale [6], offer tools that aid
users in aggregating and integrating resources from multiple IaaS
platforms, but without abstracting the underlying resources like
SpotCheck. PiCloud [5] abstracts spot and on-demand servers
rented from IaaS platforms by exposing an interface to consumers
that allows them to submit batch jobs. In contrast, SpotCheck
provides the abstraction of a complete IaaS platform that supports
any application. Finally, SpotCheck builds on a long history of

TABLE 5
Percentage increase in cost due to hot spares

Policy Price Increase
1 Pool 50%
2 Pool 25%

1 Pool 2-level bidding 30%
2 Pool 2-level bidding 15%

0 5 10 15 20 25 30 35 40 45
VPC Size

0.0
0.5
1.0
1.5
2.0
2.5

Co
st

($
)

Fig. 15. Cost of running in private cloud mode for different sizes.

research in market-based resource allocation [13], which envisions
systems with a fluid mapping of software to hardware that enable
computation and data to flow wherever prices are lowest.
Spot Market Bidding Policies. Prior work on optimizing bidding
policies for EC2 spot instances are either based on analyses of spot
price history [11], [20], [37] or include varying assumptions about
application workload, e.g., job lengths, deadlines [26], [32], [33],
[39], [40], which primarily focus on batch applications. By contrast,
SpotCheck’s bidding strategy focuses on reducing the probability
of mass revocations due to spot price spikes, which, as we discuss,
may significantly degrade nested VM performance.
Virtualization Mechanisms. Prior work handles the sudden
revocation of spot servers either by checkpointing application
state at coarse intervals [21], [34], [38] or eliminating the use of
local storage [14], [24]. In some cases, application modifications
are necessary to eliminate the use of local storage for storing
intermediate state, e.g., MapReduce [14], [24]. SpotCheck adapts a
recently proposed bounded-time VM migration mechanism [30],
[31],which is based on Remus [17] and similar to microcheckpoint-
ing [1], to aggressively checkpoint memory state and migrate nested
VMs away from spot servers upon revocation. Our lazy restore
technique is similar to migration mechanisms, such as post-copy
live migration [19] and SnowFlock [22].

9 CONCLUSION

SpotCheck is a derivative IaaS cloud that offers low-cost, high-
availability servers using cheap but volatile spot servers from the
native IaaS platform. In this paper, we showed that revocation
risk of using spot servers can be reduced by using policies
for bidding, server-selection, backup-servers, and hot-spares. By
using a combination of these risk mitigation policies, along with
novel virtualization-based bounded time live-migration mechanism,
SpotCheck is able to provide more than four 9’s availability to its
customers, which is more than 10× that provided by the native
spot servers. At the same time, SpotCheck’s VMs cost 2-5× less
than the equivalent on-demand servers.
Acknowledgements. This work is supported in part by NSF grants
#1422245 and #1229059.

REFERENCES

[1] QEMU Microcheckpointing. http://wiki.qemu.org/Features/
MicroCheckpointing.

[2] SPECjbb2005. https://www.spec.org/jbb2005/.
[3] TPC-W Benchmark. http://jmob.ow2.org/tpcw.html.
[4] Heroku. http://www.heroku.com, May 1st 2014.
[5] PiCloud. http://www.multyvac.com, May 1st 2014.
[6] RightScale. http://rightscale.com, May 1st 2014.

http://wiki.qemu.org/Features/MicroCheckpointing
http://wiki.qemu.org/Features/MicroCheckpointing
https://www.spec.org/jbb2005/
http://jmob.ow2.org/tpcw.html

14

[7] Eucalyptus workload traces. https://www.cs.ucsb.edu/~rich/workload/,
2015.

[8] AWS Case Study: Netflix. http://aws.amazon.com/solutions/case-studies/
netflix.

[9] J. Barr. New - EC2 Spot Instance Termination Notices. https://aws.amazon.
com/blogs/aws/new-ec2-spot-instance-termination-notices/, January 6th
2015.

[10] M. Ben-Yehuda, M. Day, Z. Dubitzky, M. Factor, N. Har’El, A. Gordon,
A. Liguori, O. Wasserman, and B. Yassour. The Turtles Project: Design
and Implementation of Nested Virtualization. In OSDI, October 2010.

[11] O. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir. Decon-
structing Amazon EC2 Spot Instance Pricing. In CloudCom, 2011.

[12] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow.
Blueprint for the Intercloud - Protocols and Formats for Cloud Computing
Interoperability. In ICIW, 2009.

[13] A. Bestavros and O. Krieger. Toward an Open Cloud Marketplace: Vision
and First Steps. IEEE Internet Computing, 18(1), January/February 2014.

[14] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi, and
C. Krintz. See Spot Run: Using Spot Instances for MapReduce Workflows.
In HotCloud, June 2010.

[15] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live Migration of Virtual Machines. In NSDI, 2005.

[16] J. Clark. Amazon Cloud Goes Down in Northern Virginia. The Register,
September 13th 2013.

[17] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: High Availability via Asynchronous Virtual Machine
Replication. In NSDI, April 2008.

[18] X. He, P. Shenoy, R. Sitaraman, and D. Irwin. Cutting the cost of hosting
online services using cloud spot markets. In High-Performance Parallel
and Distributed Computing. ACM, 2015.

[19] M. R. Hines, U. Deshpande, and K. Gopalan. Post-copy Live Migration of
Virtual Machines. SIGOPS Operating Systems Review, 43(3), July 2009.

[20] B. Javadi, R. Thulasiram, and R. Buyya. Statistical Modeling of Spot
Instance Prices in Public Cloud Environments. In UCC, December 2011.

[21] S. Khatua and N. Mukherjee. Application-centric Resource Provisioning
for Amazon EC2 Spot Instances. In EuroPar, August 2013.

[22] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M.
Rumble, E. De Lara, M. Brudno, and M. Satyanarayanan. SnowFlock:
Rapid Virtual Machine Cloning for Cloud Computing. In EuroSys, 2009.

[23] C. Liu and Y. Mao. Inception: Towards a Nested Cloud Architecture. In
HotCloud, June 2013.

[24] H. Liu. Cutting MapReduce Cost with Spot Market. In HotCloud, 2011.
[25] M. Mao and M. Humphrey. A Performance Study on VM Startup Time

in the Cloud. In CLOUD, June 2012.
[26] M. Mattess, C. Vecchiola, and R. Buyya. Managing Peak Loads by

Leasing Cloud Infrastructure Services from a Spot Market. In HPCC,
September 2010.

[27] K. Mills, J. Filliben, and C. Dabrowski. Comparing vm-placement
algorithms for on-demand clouds. In CLOUDCOM. IEEE, 2011.

[28] D. Plummer. Cloud Services Brokerage: A Must-Have for Most
Organizations. Forbes, March 22nd 2012.

[29] P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy. Spotcheck: Designing
a Derivative IaaS Cloud on the Spot Market. In EuroSys, 2015.

[30] R. Singh, D. Irwin, P. Shenoy, and K. Ramakrishnan. Yank: Enabling
Green Data Centers to Pull the Plug. In NSDI, April 2013.

[31] R. Singh, P. Sharma, D. Irwin, P. Shenoy, and K. Ramakrishnan. Here
Today, Gone Tomorrow: Exploiting Transient Servers in Data Centers.
IEEE Internet Computing, 18(4), July/August 2014.

[32] Y. Song, M. Zafer, and K. Lee. Optimal Bidding in Spot Instance Market.
In Infocom, March 2012.

[33] S. Tang, J. Yuan, and X. Li. Towards Optimal Bidding Strategy for
Amazon EC2 Cloud Spot Instance. In CLOUD, June 2012.

[34] W. Voorsluys and R. Buyya. Reliable Provisioning of Spot Instances for
Compute-Intensive Applications. In AINA, 2012.

[35] D. Williams, H. Jamjoom, and H. Weatherspoon. The Xen-Blanket:
Virtualize Once, Run Everywhere. In EuroSys, 2012.

[36] D. Williams, H. Jamjoom, and H. Weatherspoon. Plug into the Supercloud.
IEEE Internet Computing, 17(2), 2013.

[37] H. Xu and B. Li. A Study of Pricing for Cloud Resources. Performance
Evaluation Review, 40(4), March 2013.

[38] S. Yi, D. Kondo, and A. Andrzejak. Reducing Costs of Spot Instances via
Checkpointing in the Amazon Elastic Compute Cloud. In CLOUD, 2010.

[39] M. Zafer, Y. Song, and K. Lee. Optimal Bids for Spot VMs in a Cloud
for Deadline Constrained Jobs. In CLOUD, 2012.

[40] S. Zaman and D. Grosu. Efficient Bidding for Virtual Machine Instances
in Clouds. In CLOUD, July 2011.

[41] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor: Retrofitting
Protection of Virtual Machines in Multi-tenant Cloud with Nested
Virtualization. In SOSP, October 2011.

Prateek Sharma is a PhD student in the College
of Information and Computer Sciences at the
University of Massachusetts Amherst. His current
research focuses on Cloud Computing, Operating
Systems, and Virtualization. Sharma received his
masters degree in computer science from Indian
Institute of Technology, Bombay. Contact him at
prateeks@cs.umass.edu.

Stephen Lee is a PhD student in the College
of Information and Computer Sciences at the
University of Massachusetts Amherst. His re-
search interests include green computing and
sustainability in smart buildings. Lee received
a masters degree in computer from Chennai
Mathematical Institute, India. Contact him at
stephenlee@cs.umass.edu.

Tian Guo is an Assistant Research Professor in
the Computer Science Department at Worcester
Polytechnic Institute. She received her Ph.D. and
M.S. in Computer Science from the University of
Massachusetts Amherst in 2013 and 2016, re-
spectively, and her B.E. in Software Engineering
from Nanjing University in 2010. Her research
interests include distributed systems, cloud com-
puting and mobile computing. Contact her at
tian@cs.wpi.edu.

David Irwin is an Assistant Professor in the De-
partment of Electrical and Computer Engineering
at the University of Massachusetts Amherst. He
received his Ph.D. and M.S. in Computer Science
from Duke University in 2007 and 2005, respec-
tively, and his B.S. in Computer Science and
Mathematics from Vanderbilt University in 2001.
His research interests are broadly in experimental
computing systems with a particular emphasis on
sustainability.

Prashant Shenoy received the B.Tech degree
in computer science and engineering from the
Indian Institute of Technology, Bombay, in 1993,
and the M.S and Ph.D. degrees in computer
science from the University of Texas, Austin, in
1994 and 1998, respectively. He is currently a
Professor of Computer Science at the University
of Massachusetts. His current research focuses
on cloud computing and green computing. He is
a distinguished member of the ACM and a Fellow
of the IEEE.

https://www.cs.ucsb.edu/~rich/workload/
http://aws.amazon.com/solutions/case-studies/netflix
http://aws.amazon.com/solutions/case-studies/netflix
https://aws.amazon.com/blogs/aws/new-ec2-spot-instance-termination-notices/
https://aws.amazon.com/blogs/aws/new-ec2-spot-instance-termination-notices/

	Introduction
	Background and Overview
	SpotCheck Migration Strategies
	Nested Virtualization
	VM Migration
	Lazy VM Restoration
	Virtual Private Networks
	Putting it all together

	SpotCheck Architecture
	Managing Risks
	Server Pool Selection
	Reducing Revocation Risks using Bidding
	Single-level Bidding
	Multi-level Bidding

	Reducing Concurrent Revocations with Backup Servers
	Reducing Downtime with Hot Spares
	Providing Security Isolation using VPCs
	Arbitrage Risks

	SpotCheck Implementation
	Evaluation
	End-to-End Experiments
	SpotCheck Policies and Cost Analysis
	Comparison of Risk Mitigation Policies

	Related Work
	Conclusion
	References
	Biographies
	Prateek Sharma
	Stephen Lee
	Tian Guo
	David Irwin
	Prashant Shenoy

