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Abstract—The rise of the Internet-of-Things (IoT) holds

great promise to transform people’s lives by making society

more efficient in many areas, including energy, transportation,

healthcare, commerce, manufacturing, etc. At their core, IoT

devices use sensors to collect data on real-world physical

processes and then transmit it over the Internet to cloud

servers, which store, process, and learn from the data to

better optimize these processes, either directly (by issuing

remote commands that actuate IoT devices) or indirectly (by

issuing notifications that direct users to take some action).

Unfortunately, IoT devices also expose users to multiple new

types of privacy attacks. In particular, the sensor data collected

from IoT devices can indirectly reveal a variety of sensitive

private information. In addition, users generally connect IoT

devices to local networks, which they implicitly trust, with little

understanding of what the IoT device is doing on the network.

In this vision paper, we discuss recent work on sensor data

privacy in the context of energy systems to provide examples

of i) the surprising types of private information that we can

glean from seemingly innocuous IoT data and ii) the different

types of defenses that we have employed to preserve IoT data

privacy for energy systems. These defenses lie at different

discrete points in the tradeoff between user privacy and IoT

functionality, which motivates our current work on developing

defenses that provide a more tunable tradeoff. We also discuss

the privacy implications of connecting tens-to-hundreds of

untrusted IoT devices to implicitly trusted local networks, and

avenues for research to mitigate these privacy concerns.

I. INTRODUCTION

The rise of the Internet-of-Things (IoT) holds great
promise to transform people’s lives by making society more
efficient in many areas, including energy, transportation,
healthcare, commerce, manufacturing, etc. In each indus-
try, new IoT-enabled devices are rapidly being developed,
while, in parallel, existing devices are also being augmented
with IoT functionality, i.e., Internet connectivity, remote
programmability, and automation. The dominant operational
paradigm for IoT devices is to collect sensor data about
real-world physical processes and then transmit it, often in
real time, to cloud servers, which are able to store, process,
and learn from this data to better optimize those physical
processes. Such a cloud-based IoT paradigm has become
increasingly common and there are hundreds of commercial
IoT products that have adopted it. For example, in the
domain of smart home automation, IoT versions of power
outlet and switches, light bulbs, door locks, and thermostats
are now readily available in home improvement stores.

These IoT devices connect to the cloud to enable users to
monitor and control them via smartphone applications and

web-based dashboards. In many cases, the cloud backend
not only stores and analyzes sensor data, but also enables
remote actuation, where a device, such as a smart switch,
can be controlled remotely over the Internet. Similarly, in
the domain of smart health, numerous fitness trackers and
bands are available that track daily activities, such as steps,
exercise, sleep, and heart rate, which also connect to the
cloud to store and analyze the data they collect. From the
IoT service provider’s perspective, collecting real-world data
from large numbers of devices enables them to develop
new analytic techniques and learn faster by leveraging much
more data than can be collected from any single device.

The operational data gathered by IoT devices is often
considered innocuous by users and enterprises—users tend
to believe they own the data produced by their IoT devices
and often do not have a clear understanding of how the
data is being used by cloud services or what it may reveal.
In many cases, the data is transmitted over the Internet in
plaintext, stored unencrypted in the cloud, shared with third-
party analytics companies, and even made publicly available
over the Internet. Recent studies have shown that IoT data
can leak sensitive or private information, and can often
contain side-channel information that reveals information
well beyond the primary purpose for which the data was
generated. For instance, data from smart switches, smart
thermostats, and smart power meters can reveal whether a
home is occupied, as well as the types and usage patterns
of common electrical appliances [1]–[3], while power data
from rooftop solar panels can reveal their location [4], [5].

Smart fitness trackers explicitly track the locations of
users as part of monitoring their daily activities, which
can also leak sensitive information about the user or the
location itself. The most recent example of this to gain broad
attention in the press was the Strava fitness app that publicly
posts a map of its users’ activity on the Internet. Security
researchers recently showed that this public activity map
posed a serious threat to U.S. national security by indirectly
revealing the locations and behaviors of U.S. military bases
and personnel in Iraq and Syria [6]. In other cases, many
IoT devices make their data anonymously visible over the
Internet through searchable web links under the assumption
that such “anonymous” data is harmless. However, many of
the privacy attacks above can cause such anonymous data
sources to reveal sensitive information about the users.

While the examples above are from widely different
application domains, the sensitive information they reveal



is similar, and focuses on user behavior, e.g., what are users
doing and when?, and user location, e.g., where are users? In
this vision paper, we outline answers to these questions that
can be drawn from analyzing energy data recorded by ad-
vanced metering infrastructure (AMI), i.e., smart meters and
other Internet-connected energy sensors, to demonstrate the,
often unknown, privacy threat posed by mass data collection
from IoT devices. Smart meters represent one of the most
widely deployed IoT devices in the world with installations
estimated to hit 70M by the start of 2017 and 90M by
2020 [7]. Smart meters are particularly interesting because
they are generally not installed voluntarily by users, but
instead are owned and managed by utilities to improve the
electric grid’s efficiency and its ability to handle increasing
penetrations of intermittent renewable generation, e.g., from
solar modules and wind turbines. Even so, as we discuss,
data collected from smart meters is being used for a wide
range of purposes beyond utility operations, often without
the consent of users. After describing various analytics that
can reveal user behavior and location from smart meter
data, we then outline the different types of defenses that
we have employed to preserve energy data privacy and
prevent answering the questions above, and how they might
generalize to other types of data.

Of course, a simple way to protect user privacy is to
simply prevent IoT devices from collecting any data, and
forego any of the functionality or efficiency benefits they
provide. Thus, a key research challenge is to determine how
to maximize the functionality and benefits of IoT devices,
while concurrently preserving user privacy, preferably at
a low cost. The defenses we describe in the context of
energy systems generally lie at different discrete points in
this tradeoff between user privacy, IoT functionality, and
cost. For example, one of the defenses strongly protects
user privacy by revealing the minimal necessary information
about a building’s energy usage, e.g., only the information
necessary to correctly bill users for their energy usage,
but to the detriment of functionality, e.g., by preventing
a wide range of energy analytics that could improve the
grid’s energy efficiency. In contrast, we discuss another
type of defense that actively modifies energy usage, e.g, by
controlling batteries or large loads, to mask the information
that it reveals, but at a potentially high cost. These examples
motivate our ongoing work on designing low-cost defenses
that enable accurate grid-scale analytics on large-scale en-
ergy data that can improve grid operations, but prevent fine-
grained analytics capable of identifying the behavior and
location of individual users. In addition, our ongoing work
also enables a more tunable tradeoff between user privacy
and functionality, enabling users to better control the private
information their energy data reveals.

In addition, we also examine the threat posed by numerous
untrusted IoT devices being connected to implicitly trusted
local networks. Users often have little understanding of what

IoT devices are doing on the network, and little way to verify
their operation, as many devices have narrow user interfaces
that reveal little about their underlying status or operation.
As a result, IoT devices are increasingly being compromised
and actively used in Distributed Denial of Service (DDoS)
attacks [8]. In addition, compromised IoT devices could also
be used to launch indirect attacks on infrastructure, e.g., by
turning off the thermostat in cold weather and causing pipes
to freeze. Finally, from a privacy standpoint, compromised
IoT devices also have the ability to passively monitor
local networks enabling them to profile user behavior with
little chance of detection. Collectively, these threats warrant
greater external monitoring and visibility into the behavior
of IoT devices attached to local networks.

II. PRIVATE MEMOIRS OF IOT DEVICES

In this section, we provide several examples to highlight
the privacy implications of IoT devices and cloud-based IoT
services. Our examples show how seemingly innocuous data
gathered by IoT devices can contain sensitive side-channel
information, and how we can employ simple analytics tech-
niques to reveal private information that goes beyond the
original purpose for which the data was collected.

A. Smart Home Devices
Recent years have seen an explosion of smart home IoT

devices that enable home automation, remote control, and
user convenience. Home owners may now choose from a
plethora of IoT devices that make many aspects of a home
“smart”—ranging from smart power outlets and switches,
such as the Belkin Wemo [9], smart thermostats, such as
the Nest [10], Lyric [11], and Ecobee [12], and smart locks,
such as August [13]. These devices typically connect to a
cloud service, which acts as a proxy that receives data and
events from the device and sends remote commands (often
received from users via a smartphone app) to the device.

The cloud service typically maintains a log of histor-
ical events, i.e., a “memoir,” for the device, which can
reveal private information about users. In the simplest case,
events, such as flipping a light switch or unlocking an entry
door, reveals the presence of occupants in a home. Smart
thermostats may also include motion sensors that directly
monitor occupancy to learn occupancy patterns, which they
use to derive thermostat schedules that improve energy-
efficiency without reducing user comfort. These occupancy
patterns directly reveal when users leave from and return
to the home on a day-to-day basis, as well as when and
how frequently they are away for extended periods of time,
e.g., for vacations. In recent years, electric utilities have also
been replacing traditional electromechanical energy meters
with smart meters, which monitor and record home energy
usage at much finer granularities, e.g., every few minutes
rather than once per month. Consumer-grade energy meters
are also widely available that enable end-users to monitor



 0

 1

 2

 3

8am 11am 2pm 5pm 8pm 11pm
 0

 1
P

o
w

e
r 

(k
W

)

O
cc

u
p
a
n
cy

Time (hours)

 0

 1

 2

 3

 4

 5

 6

8am 11am 2pm 5pm 8pm 11pm
 0

 1

P
o
w

e
r 

(k
W

)

O
cc

u
p
a
n
cy

Time (hours)

(a) Home-A (b) Home-B
Figure 1. Overlay of average power usage every minute (black) with binary occupancy (red), where one indicates at least one occupant is present and
zero indicates no occupants are present, over one day (8am-11pm) for two homes.

their home’s total electricity usage. Interestingly, even these
“coarse-grained” devices that are simply measuring a home’s
total electricity usage can reveal sensitive activities within
the home. Below, we describe two examples of such analyt-
ics techniques that have been developed recently.
Non-intrusive Occupancy Monitoring (NIOM) is a class
of analytics techniques that learn occupancy information
from the energy usage data of a home or building. The
methods are non-intrusive, in that they do not require any
direct instrumentation or sensors to monitor occupancy, and
only indirectly learn occupancy via “side-channel” informa-
tion embedded in energy usage data. The primary intuition
behind NIOM is that when a home is occupied, occupants
perform activities that manifest themselves as an increase in
the home’s total energy usage, its burstiness, or both. For
example, occupants may use a microwave to cook food, do
their laundry, or simply turn lights on and off, when home,
all of which cause changes to a home’s energy usage.

In contrast, when a home is not occupied, many of these
changes in energy from these interactive devices that require
manual operation do not occur. As result, statistical analyses
of energy data traces over time, as recorded by a smart
energy meter, enables NOIM methods to accurately identify
periods when a home is occupied and when it is not. A
practical challenge in designing such analytics techniques is
to account for the presence of background appliances that
operate regardless of occupancy. For example, a refrigerator
will continue to operate regardless of whether someone is
home or not, requiring its energy usage to be filtered out
when performing NIOM analysis.

To illustrate, Figure 1 shows an annotated trace of energy
usage of two different homes that are marked with periods
when a home is occupied or not [1]. As the figure shows,
periods of occupancy correlate well with higher and more
bursty energy usage. While the figure also shows the energy
usage from background devices, it illustrates that their statis-
tical characteristics are different than interactive foreground
devices that users control, e.g., such as a microwave or
lighting. Interestingly, prior work [1], [14] reports occupancy
detection accuracies of 70-90% for a range of homes,
which is indicative of the amount of side-channel occupancy

information embedded in smart meter energy data.

Non-intrusive Load Monitoring (NILM) is a family of
analytics techniques that disaggregate the total energy usage
of a home into its individual appliances [15]–[17]. Thus,
given a trace of a home’s aggregate electricity usage, a
NILM technique decomposes this total energy usage into
the energy used by each individual device or appliance.
In doing so, NILM determines what appliances are present
in a home and their usage patterns and frequency. NILM
methods have been studied for nearly three decades, and a
variety of techniques to perform NILM exist, ranging from
edge detection and signal processing to machine learning.
For example, PowerPlay [2] is a recently proposed method
that uses a model-driven approach and defines the notion
of virtual sensors for each device to track its individual
energy usage. PowerPlay differs from many prior NILM
techniques in its focus on tracking the real-time power usage
of individual devices, rather than focusing on disaggregating
every device’s energy usage over a long period of time. In
addition, PowerPlay assumes that detailed models of each
device being tracked are known a priori. PowerPlay’s model-
driven approach detects a small number of identifiable load
features in smart meter data, which derive from a parameter-
ized model of a load’s energy usage profile over time, which
is based on a small number of fundamental electrical char-
acteristics, i.e., whether a load is resistive, inductive, non-
linear, or cyclical. Prior work provides a detailed description
of these load types, and their corresponding models [18].

Figure 2 compares PowerPlay’s error in disaggregating
the energy usage of common household devices with that of
a conventional NILM technique that uses an approach based
on Factorial Hidden Markov Models (FHMM) [19]. Rather
than leverage a well-known model, the FHMM approach
must learn a model using training data. Here, disaggregation
error is the difference between a device’s actual energy usage
and its inferred energy usage, normalized by its total energy
usage. Lower values are better, with an error factor of zero
indicating perfect tracking. While there is no upper bound
on the tracking error factor, an error factor of one indicates
that the errors are equal to the device’s energy usage. In
general, a tracking error factor near one is not considered
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Figure 2. PowerPlay is more robust to noisy smart meter data when
tracking loads than the conventional FHMM-based NILM approach.

good, since simply inferring a load’s energy usage to be zero
at each time t results in a tracking error of one. Our result
shows that PowerPlay has significantly less error in tracking
device energy usage than the FHMM approach, especially
for device’s with lower energy usage. The exception is the
clothes dryer, which has a large energy usage that both
approaches are able to accurately disaggregate and track.

Although NILM was devised as a method to track load-
level energy usage without instrumenting each load, it has
numerous privacy implications. First, it demonstrates that
even a simple dataset, such as the electricity usage of
a home, embeds a significant amount of information that
permits disaggregation. Second, disaggregating loads reveals
not only the energy used by each device, but also information
about the daily activity patterns of the users. For instance,
we can infer whether users like to eat out and when by
examining the energy usage of cooking-related devices.
Similarly, based on the usage of the microwave versus a
cooktop, do users eat frozen dinners or prepare fresh meals?
What days of the week do the users do their laundry? Do
they watch a lot of TV? What time do the occupants go to
bed? When do they take showers (e.g., from usage of electric
water heaters)? Are there children in the household (e.g.,
inferred from the alignment of energy usage and occupancy
to the school calendar)? Clearly, this type of information is
private, and the users may not wish for their energy usage to
reveal such information about their daily lives. However, this
information is also potentially highly profitable, especially
if collected at large scales, as it enables companies to profile
user behavior and better target their advertising campaigns.
There are indications that companies focused on energy data
analytics are interested in information for these purposes.
For example, Figure 3 shows a job ad from a NILM-focused
startup, which highlights the ability to profile users and
identify specific appliance brands in energy data.

B. Solar Energy Analytics

While the privacy attacks above focus on inferring human
activities from IoT data, we now discuss how energy data
can also leak location information, opening up the possibility

Figure 3. Job ad scraped from the web posted by a NILM-focused startup,
which highlights the ability to profile users using energy data.

of location-based privacy attacks. With the growing popu-
larity and falling costs of photovoltaic solar technologies,
rooftop solar deployments are growing rapidly in many parts
of the world. Electricity generated by rooftop solar arrays
can be used to satisfy the energy demands of devices and
appliances within the home, while feeding any excess solar
electricity to the grid. Thus, the grid is used to compensate
for any differences between solar generation and local de-
mand. Nearly all solar deployments are instrumented with
IoT sensors that track generation at fine granularities, and
expose this data to users via smartphone apps or web-based
dashboards. Our recent work has demonstrated that solar
generation data at a particular site also embeds the location
of that site, and this location information can be extracted
from the generation trace using solar analytics methods.

Intuitively, solar generation at a site depends on the
amount of sunlight received at that location, which in turn
depends on the length of the day, i.e., from sunrise to sunset,
among other factors. The sunrise, solar noon, and sunset
times are governed by the latitude and longitude of each
specific location—the longitude determines when the sun
rises and sets, while the latitude determines the length of
the day over the course of the year. Consequently, given the
sunrise, solar noon, and sunset times for a particular data,



Figure 4. Enphase does not give users an option to prevent the sharing or selling of their solar data. The only option is whether the data is anonymized
by removing the geo-location. However, our work shows that analytics companies can extract the system location from the data itself.
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Figure 5. Localization accuracy using both solar and weather signatures.

it is straightforward to compute the latitude and longitude
that corresponds to those times. Solar data indirectly reveals
when the sun rises and sets based on when panels start
and stop generating energy and solar noon is revealed from
when the generation peaks. While the solar modules do not
precisely start and stop generating energy when the sun rises
and sets, respectively, we can analyze generation data over
many days to infer the location of solar panels with high
accuracy using the solar signature embedded in the data [4].

In addition, solar panels also exhibit a unique weather
signature, since the weather conditions at each location also
tend to be unique. Since detailed weather data is publicly
available throughout the world, we have also developed
techniques that localize solar sites by correlating changes in
generation with changes in the weather. This weather-based
localization can further increase localization accuracy [5].
In addition, when combined with techniques that are able to
identify and characterize rooftop solar arrays from publicly-
available satellite imagery, these techniques have the poten-
tial to identify the specific homes that generated the solar
data [20]. Figure 5 illustrates the accuracy of solar localiza-
tion (in terms of the distance from the actual location) using
solar signatures (labeled SunSpot) and weather signatures
(labeled Weatherman) for 10 solar sites in different states.
Here, the SunSpot bar shows localization accuracy on 1-
minute resolution solar data, while the Weatherman bar
shows localization accuracy on 1-hour resolution solar data.
The figure shows that solar localization often has high accu-
racy, to within a few kilometers, when using high resolution
1-minute solar data, although a few sites exhibit a high

inaccuracy. Localization using weather signatures improves
the localization accuracy to within a few kilometers in all
cases using significantly coarser 1-hour data.

Overall, our work shows the feasibility of location attacks
on anonymous solar datasets. While smart meters typically
report only “net” meter data, which combines energy con-
sumption and solar generation, our recent work on solar dis-
aggregation shows that we can accurately separate net meter
data into energy consumption and solar generation [21].
Solar disaggregation both enables analytics companies to
extract solar generation and its location information from
net meter data and extract energy consumption data with
its information about user behavior, e.g., using NIOM and
NILM. This privacy attack is important, since many utilities
provide energy analytics companies, such as the one in the
job ad from Figure 3, with anonymized energy datasets
from smart meters, i.e., by stripping the data of identifying
account information. In addition, Figure 4 shows a screen-
shot of the privacy settings from the web dashboard for
Enphase microinverters, the largest manufacturer of solar
microinverters, which convert DC power from solar modules
to AC power in-phase with the grid. Users have no option
to prevent Enphase from sharing or selling their data: their
only option is whether or not Enphase anonymizes their
data by removing their geo-location. This practice is now
so common that the Department of Energy recently released
a Voluntary Code of Conduct (VCC) for how utilities should
manage user energy data [22]. Importantly, the VCC does
not require user consent to release anonymized energy
data with names and addresses stripped. Consent is likely
not required because the energy analytics above do not
reveal location, which prevents third-parties from associating
private behavior above with a specific home. However, our
work demonstrates that, for solar-powered homes, these
anonymized datasets are not actually anonymous, as their
location is embedded in the data itself.

C. Smart Health Devices

While our examples above focus on IoT devices that mon-
itor energy consumption and generation, there are numerous
other IoT devices that expose users to similar privacy threats.
For example, wearable fitness tackers and health bands that
have become popular in recent years also raise numerous
privacy concerns. These trackers monitor activities, such as



walking, running, sleeping, many types of exercises, heart
rate, skin temperature, and other metrics. In many cases, they
also record the GPS locations of where these activities are
being performed. Users often share the recorded data with
friends using social media features of these cloud services.
Sharing of health data, by itself, has privacy implications
since it can reveal details of a person’s health. For example,
the Apple Watch captures heart rate data for its users and
Apple researchers found that heart rate patterns can be mined
to detect irregular heart rate and atrial fibrillation (AFib), a
leading cause of stroke [23]. Another study analyzed this
data to detect early signs of diabetes [24]. While there
are benefits to detecting such health problems, such private
data is also prone to misuse by third parties. For example,
depending on the regulations in place, health insurers could
use this information in setting rates, or employers could
use it in making hiring decisions. The location information
gathered by fitness trackers also leaks private information.
For example, the start and end location of a run recorded
by the fitness tracker will reveal the user’s home or work
location. In the case of Strava, user running routes inadver-
tently revealed the location of secret military bases when
anonymized user data was released for visualization [6].

III. CHALLENGES IN SAFEGUARDING USER PRIVACY

In this section, we present ideas for safeguarding user
privacy in light of potential leakage of private side-channel
information embedded in IoT data.

A. Differential Privacy

Differential privacy is a class of techniques that adds
probabilistic transformations to each data item in a large
database to prevent any individual from being identified from
the larger set. Differential privacy has emerged as an impor-
tant tool for anonymizing identities in large datasets. While
differential privacy techniques have significant promise, they
are not directly applicable in many IoT scenarios. For
example, many cloud IoT services already know the identity
of the users, since they are actively providing services to
users (such as the ability to remotely control lights, AC
or locks in their home). In such cases, users are more
interested in preventing this data from leaking other side-
channel information about their activity (e.g., occupancy)
rather than masking their identity. Similarly, many services
need location data to perform their tasks. For example, a
smart door lock may auto-lock itself when the user is more
than a certain distance from their home. Precise location
information is needed in this case, but it is also desirable to
mask other information in the location data, such as where
the user goes to shop or where they work. Techniques that go
beyond differential privacy are needed in these scenarios. Of
course, differential privacy is still applicable to IoT datasets
that are being publicly released in anonymized form to
prevent de-anonymization of individuals from the data.

B. Obfuscation

Data obfuscation techniques modify or transform the data
that is being collected to prevent others from performing
analytics on the data. This is done by adding noise or
other transformations to “significantly” modify the data and
prevent analytics from learning anything useful from it. For
example, researchers have studied both noise injection and
smoothing as techniques to prevent occupancy detection
from electricity meter data [25]–[27]. These approaches
control large electrical loads, such as large batteries and
electric water heaters, to significantly alter the energy usage
pattern and mask the features that reveal sensitive informa-
tion. Figure 6 demonstrates a obfuscation approach using
a water heater, which we call Combined Heat and Privacy
(CHPr) [25]. CHPr varies the rate water is heated in an
electric water heater to mask low and non-bursty periods
of electricity caused by a lack of occupancy. Since electric
water heaters have a large thermal energy storage capacity
relative to the electricity usage of most homes, it can
typically mask occupancy without running out of hot water.

The top graph shows a home’s original week-long power
usage and its ground truth occupancy, while the bottom
graph shows its power usage after applying CHPr. A home’s
original week-long power usage and ground truth occupancy
(top), as well as its power usage when using a CHPr-enabled
50 gallon water heater and detected occupancy when using
NIOM. We also quantify the performance of the occupancy
detection attack on the original demand and the CHPr-
modified demand in terms of the Matthews Correlation
Coefficient (MCC) [28], which is a standard measure of
a binary classifier’s performance, where values are in the
range �1.0 to 1.0, with 1.0 being perfect detection, 0.0 being
random prediction, and �1.0 indicating detection is always
wrong. MCC values closer to 0.0, or random prediction,
are better for masking occupancy. In this case, our results
show that the MCC of the attack on the CHPr-modified data
(on the bottom) is only 0.045, which is nearly the same as
random prediction, i.e., an MCC of 0.0, and is a factor of
10 less than the MCC of the attack on the original data in
the top graph, which is 0.44.

Preventing occupancy detection through obfuscation is a
particularly challenging problem, since it requires shifting a
large amount of load. Obfuscating NILM is less challenging,
since it does not require shifting as much load. As a result,
prior work examines different techniques for using a battery
to protect against using NILM to identify appliances [26],
[27]. Of course, unlike CHPr, which is “free” since the
water heater must heat the water anyway, these battery-based
methods incur a high cost to install and maintain the battery.
Of course, another significant downside to data obfuscation
is that it is a blunt instrument that prevents all analytics—
both useful analysis on the data, as well as those that leak
private information. It is an open research question as to how
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Figure 6. A home’s original week-long power usage and ground truth occupancy (top), as well as its power usage when using a CHPr-enabled water
heater and detected occupancy when using NIOM.

obfuscation can suitably modify data to allow only certain
kinds of analytics, while preventing others.

C. Cryptographic Methods
Cryptographic methods have also been used to safeguard

the privacy of users in IoT environments. One approach con-
sists of storing all IoT data locally at the device and allowing
the cloud service to query the device as needed. Responses
to each query are sent as a verifiable cryptographic proof
rather than sending a portion of the data (since the latter
can leak private data). The cryptographic proof enables the
cloud server to verify that the response to the query is correct
without ever seeing the data used to construct the response.
An example of this approach is Zero-Knowledge Proofs,
which have been used to design a privacy-preserving smart
meter in prior work [29], [30]. This work showed how the
meter can be queried for the total recorded electricity usage
over a period, such as the month, and the response can be
sent in the form of a verifiable cryptographic proof without
sending the raw usage data. Such cryptographic methods are
promising from a privacy perspective but a general approach
for arbitrary queries and IoT service is an open question–in
the current approach, specific proofs need to be designed
for particular types of queries. Furthermore, the approach
does not yet generalize to two way communication between
the IoT device and the cloud service. Finally, the approach
permits only a narrow set of queries and thus may prevent
utilities from performing a number of useful analytics that
increase grid reliability and efficiency.

D. Local IoT services
The primary idea that underlies the cryptographic method

above is to keep data locally at the device and not send it to
the cloud server. This is a broad principle that is useful for
building any privacy-preserving IoT application. In general,
if the data is kept locally and never sent to third parties,
the user stays in control of the data and privacy attacks on
the data can be minimized. Such approaches are becoming
more feasible, since IoT devices or local IoT hub are gaining

more processing and storage capabilities that make high-
performance local services more feasible. In such a scenario,
the cloud service may still play a role–for instance, the cloud
service may learn a general model over the data and send the
model to the local IoT device, which then executes it locally
on local data. Techniques, such as transfer learning, can be
used in such scenarios, which allows general models to be
applied to specific contexts. More generally, the approach
implements all the “intelligence” of smart devices locally at
the device and eliminates the cloud service or vastly reduces
reliance on the cloud backend.

E. User Controllable Privacy
The above discussion of leakage of private information

embedded in IoT data, and the need to mitigate such privacy
attacks, broadly points to the need to allow users to have
full control over their data, including how it is used by third
parties and what can be gleaned from the data. We refer to
this “holy grail” of IoT privacy as user controllable privacy.
Some researchers have argued for an abstract “knob” that is
controlled by users and represents their privacy preferences:
the knob can be adjusted to tradeoff the loss of privacy that
comes with sharing data with third parties with the value or
utility offered by the service that comes from sharing the
data. Of course, users should also be able to prevent side-
channel leakage by ensuring that data is shared for a certain
purpose and no other information can be learned from it. For
example, a smart meter should provide usage information to
a utility to calculate monthly electric bill, but should do so
in a way that prevents occupancy or NILM-based analytics
from being performed on the data. Location data poses
particular challenges since location information is necessary
to tailor the service in a location-specific manner, but user
should be able to thwart location analytics from gleaning
other side-channel information from such data. There are
many open challenges to achieving user controllable privacy.
However, it remains a worthy goal for researchers so as to
ensure IoT devices and services can provide convenience to
end users without compromising their privacy.



IV. IOT NETWORK VULNERABILITIES

Finally, while the privacy attacks and defense above
focus on the data that IoT devices collect, IoT devices also
expose users to new network vulnerabilities, since they are
connected to implicitly trusted local networks. As embedded
IoT devices proliferate, the probability that attackers will
compromise them increases. Embedded IoT devices use
increasingly high-power general-purpose processors capable
of running sophisticated software stacks atop commodity
operating systems, such as Linux, that expose a much larger
attack surface than earlier embedded devices, which gener-
ally used custom software on lower-power processors with
narrower functionality. Similar to smartphones, some IoT
devices now enable users to install third-party apps, which
exposes them to, not only external attacks via the network,
but also internal attacks via their software interfaces.

A key difference between IoT devices and more general-
purpose devices, such as laptops, smartphones, tablets, etc.,
is that they have very narrow, potentially non-existent, user-
facing interfaces. Further, most IoT devices do not allow
administrative-level access to devices that enables users
visibility into their internal operations. As a result, users
are much less likely to know if an IoT device has been
compromised by an attacker. In general, users do not have a
deep understanding of how most IoT devices work or how
they interact with external entities over their network.

In some cases, as network management becomes more
automated, users may not even realize that a device runs soft-
ware at all and connects to remote servers on the Internet via
their local network. For example, a typical home today may
have over 40 IoT devices connected to its network, including
multiple smart thermostats, plug-level energy monitors, a
solar inverter, a smart washing machine and dryer, a hub for
IoT devices, multiple smart televisions, etc. Many of these
devices are running some version of Linux, often with an
open ssh port that cannot be accessed by the consumer.

Importantly, such IoT devices operate behind the firewall,
e.g., provided by the gateway router, in private local area
networks that are implicitly trusted. This firewall typically
protects network devices on these private networks from the
numerous bots that probe servers on the public Internet for
known vulnerabilities. As a result, servers that exclusively
operate behind firewalls are often significantly more vulner-
able than servers on the public Internet, since users are not
accustomed to frequently updating their software to install
the latest security patches and prevent breaches. In some
cases, servers on these private networks may not have ever
had (or needed) a security software update.

Since IoT devices generally operate behind such firewalls
on local area networks, and open network connections to
remote servers “in the cloud,” they allow those external
servers an avenue for tunneling into trusted local area
networks. Such tunneling is required for an IoT device to

operate, as the basic control loop is to send sensor data
to the cloud, where it is processed, and then results and/or
actuation commands are sent to the device by tunneling
through the firewall via the device’s initial network connec-
tion. Unfortunately, this basic control loop opens up multiple
possible vulnerabilities that an attacker may exploit.

For example, an attacker could compromise the remote
server, enabling them to steal data sent by the device or send
the device erroneous data or commands that cause the device
to misbehave. In addition, an attacker could compromise a
software upgrade, enabling them to install their own software
on the device, allowing them to attack other devices within
the local area network or in the Internet. For instance, a
recent distributed denial of service attack on the DNS system
stemmed from millions of compromised IoT devices, e.g.,
routers, IP cameras, DVRs, etc. [31]. Importantly, from a pri-
vacy standpoint, an attacker could also set the compromised
device’s network card in promiscuous or monitor mode
and passively monitor the local network traffic, and either
perform deep packet inspection to learn sensitive information
and profile the occupants of the building, the types of devices
they own, their habits, etc. This type of vulnerability is
particularly harmful since it is unlikely that users would ever
detect or notice such passive monitoring of their networks.

These examples demonstrate that the nature of network
and computer security is poised to dramatically change with
the proliferation of next-generation IoT devices. Users can
no longer assume that their local area networks are secure,
and that attacks originate from outside their local network.
In addition, as the examples above illustrate, securing the
network is much harder since users typically do not have
administrative access to IoT devices, and they cannot nec-
essarily trust the company that sells the device to ensure
its security, since that company may become compromised,
e.g., from an an external attack or by their own employees.
As a result, users will need to monitor their local networks
to identify suspicious network traffic patterns from devices
based on their frequency of transmission, the amount of data
they transmit, and where those transmissions are directed
in the Internet. Upon identifying suspicious traffic, local
networks will need to be able to automatically configure
themselves to isolate suspicious devices from other devices
on the network and potentially cut off their network access.

Thus, a promising area of research is designing ”smart”
gateway routers and access points that classifies devices
based on their typical traffic patterns, and are able to auto-
matically configure the network to isolate IoT devices from
other local network elements. In general, gateway routers
should follow the principle of least privilege, where IoT
devices connected to local area networks that users cannot
readily observe or control are isolated as much as possible
from other devices on the local network.



V. CONCLUSION

This vision paper discusses recent work on sensor data
privacy in the context of energy systems to provide examples
of i) the surprising types of private information embedded
in IoT sensor data and ii) the different types of defenses that
have been employed to preserve IoT data privacy, particu-
larly in the context of energy systems. These defenses have
different tradeoffs between privacy, IoT functionality, and
cost, which motivates new research on developing defenses
that enable users to control this tradeoff. We then outline
the privacy implications of untrusted IoT devices connecting
to implicitly trusted networks, and possible future research
directions to mitigate these privacy implications.
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