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ABSTRACT
Transient computing has become popular in public cloud environ-

ments for running delay-insensitive batch and data processing ap-

plications at low cost. Since transient cloud servers can be revoked

at any time by the cloud provider, they are considered unsuitable

for running interactive application such as web services. In this

paper, we present VM deflation as an alternative mechanism to

server preemption for reclaiming resources from transient cloud

servers under resource pressure. Using real traces from top-tier

cloud providers, we show the feasibility of using VM deflation as

a resource reclamation mechanism for interactive applications in

public clouds. We show how current hypervisor mechanisms can be

used to implement VM deflation and present cluster deflation poli-

cies for resource management of transient and on-demand cloud

VMs. Experimental evaluation of our deflation system on a Linux

cluster shows that microservice-based applications can be deflated

by up to 50% with negligible performance overhead. Our cluster-

level deflation policies allow overcommitment levels as high as 50%,

with less than a 1% decrease in application throughput, and can

enable cloud platforms to increase revenue by 30%.
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1 INTRODUCTION
Transient computing is becoming commonplace in cloud environ-

ments. Today, all major cloud providers such as Amazon, Azure,

and Google offer transient cloud servers in the form of preemptible

instances that can be unilaterally revoked during periods of high

server demand. Transient computing resources enable cloud providers

to increase revenue by offering idle servers at significant discounts
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(often 7-10X cheaper) while retaining the ability to reclaim them

during periods of higher demand.

While transient cloud servers have become popular due to their

discounted prices, their revocable nature has meant that users typ-

ically limit their use for running disruption-tolerant jobs such as

batch or data processing tasks. They have traditionally not been

used for online web services due to potential downtimes that occur

when the underlying servers are revoked.

In this paper, we present virtual machine (VM) deflation as an al-

ternative mechanism for reclaiming resources from transient cloud

servers. We argue that VM deflation is more attractive than out-

right preemption for applications, since they continue to run, albeit

more slowly, under resource pressure rather than being terminated.

Deflation simplifies application design since they no longer need

to implement fault tolerance approaches such as checkpointing to

handle server preemptions. Deflation also expands the classes of

applications that are suitable to run on transient cloud servers—

even web services can utilize such servers since downtimes from

preemptions are no longer a risk; with the exception of mission

critical web workloads, less critical web applications that are will-

ing to tolerate occasional slowdowns can run on such servers at a

much lower cost than on traditional cloud servers.

The notion of resource deflation was first proposed as a cascade

deflation approach [38] that collaboratively reclaimed resources

from the application, the OS, and the hypervisor. Cascade deflation

requires cooperation from the OS and the application and is im-

practical in public clouds that treat VMs as “black boxes.” Instead,

a hypervisor-only approach to deflation that requires no support

from the application or OS is better suited to Infrastructure as a

Service (IaaS) public clouds—the key focus of our work.

By fractionally reclaiming resources from applications instead of

outright preemption, VM deflation reduces the risk of downtimes

for interactive applications, with a modest decrease in application

performance. In designing and implementing our hypervisor-only

deflation approach, our paper makes the following contributions.

We demonstrate the feasibility of using VM deflation as a re-

source reclamation mechanism in public clouds using real CPU,

memory, disk, and network traces from two top-tier cloud providers

(Azure and Alibaba). Our analysis shows that cloud VMs running

interactive applications have substantial slack and can withstand

deflation of 30-50% of their allocated resources with less than a 1%

performance impact.

We then show how current hypervisor mechanisms such as hot-

plug and throttling can be used to implement VM deflation. We
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also present several cluster-wide policies for VM deflation-based

resource reclamation. Our policies present different tradeoffs and

capabilities while attempting to minimize the performance impact

of VM deflation.

We implement a prototype of our VM deflation mechanisms

and policies on a virtualized Linux cluster and evaluate its efficacy

using realistic web applications as well as other workloads. We also

conduct a trace-driven evaluation of our policies using VM-level

workloads from a cloud provider. Our results show that:

(1) The resource utilization of cloud VMs is low, which makes de-

flation a viable technique for transient resources.

(2) Deflation can be implemented with hypervisor and guest-OS

level overcommitment. These deflation mechanisms can reclaim

large amounts of resources in a black-box manner, with minimal

performance degradation. For interactive microservice based

applications, even 50% deflation results in negligible reduction

in performance.

(3) Our cluster-level deflation policies make deflation an effective

technique for increasing cluster overcommitment (the ratio of

committed VM allocations to cluster hardware availability) by

up to 50%; nearly eliminates the risk of preemptions; and results

in less than 1% drop in application throughput.

The rest of this paper is structured as follows. Section 2 presents

background on transient computing and deflation. Section 3 presents

our feasibility analysis of VM deflation in public clouds. Section 4

and 5 present VM deflation mechanisms and cluster-wide deflation

policies, respectively. Section 6 and 7 present our implementation

and experimental results. Finally, Section 8 and 9 present related

work and our conclusions.

2 BACKGROUND
In this section, we provide background on transient cloud comput-

ing, and VM deflation.

Transient computing. Our work assumes a cloud data center

where applications run on traditional (“on-demand”) servers or

transient servers. Both types of servers are provisioned using vir-

tual machines, and cloud applications run inside such VMs. Cloud

offerings such as Amazon spot Instances [10], Google Preemptible

VMs [3], and Azure batch VMs [5] are examples of transient servers.

Transient cloud servers represent surplus capacity that is offered

at discounted rates but these resources can be reclaimed under

resource pressure (e.g., higher demand for on-demand servers).

Batch-oriented applications are particularly well suited for tran-

sient computing. Such applications tend to be both delay and disrup-

tion tolerant and can handle longer completion times. In the event

of a preemption, they can simply be restarted from the beginning

or restarted from a checkpoint if the application is amenable to

periodic checkpointing. Consequently, transient cloud servers have

become popular for running large batch workloads at a substantial

discount over using on-demand servers [39].

Deflation. While current transient servers implement resource

reclamation in the form of preemptions—where the VM is unilat-

erally revoked by the cloud provider—our work explores the use

of VM deflation as an alternative approach for resource reclama-

tion under pressure. Although deflation frees up fewer resources

than preemption (which frees up all of the VM resources), it en-

ables applications to continue execution and eliminates application
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Figure 1: Overview of our deflation system.

downtimes due to preempted servers [38]. Our hypothesis is that

occasional performance degradation, rather than termination and

downtime, is more acceptable to many interactive and web applica-

tions, except the most critical ones, making transient computing

feasible for a broader class of applications.

Since modern hypervisors allow resource allocation of resident

VMs to be increased or decreased dynamically, VM deflation can be

realized using current hypervisor mechanisms, such as ballooning

[47], hotplugging, changing CPU shares, etc. While any of the exist-

ing techniques can be used to implement VM deflation mechanisms,

the challenge lies in the design of judicious policies on when and

what to deflate and by how much, while minimizing the impact

of deflation on application performance. We note that while VM

deflation mechanisms are similar to elasticity (e.g., vertical scaling)

mechanisms, our goal is to focus on cluster-wide deflation policies

for resource reclamation, a different problem than elastic scaling as

discussed in Section 8.

Figure 1 gives an overview of our deflation system—the cluster

manager implements the global VM deflation and placement poli-

cies (Section 5) and places new VMs onto servers. The hypervisor

implements local deflation policies (also in Section 5), and uses

VM deflation mechanisms (Section 4). The hypervisor also sends

notifications to the application manager (such as a load balancer),

which can help applications respond to deflation.

3 FEASIBILITY OF DEFLATION IN PUBLIC
CLOUDS

Before presenting our deflation techniques, we examine the effi-

cacy and feasibility of deflating public cloud applications. We use

publicly-available resource usage traces from two top-tier cloud

providers, Azure [14] and Alibaba [15]. The goal of our analysis is

to understand the feasibility of deflating CPU, memory, disk, and

network allocations of real cloud applications, and specifically in-

teractive web applications, under time-varying workloads that they

exhibit. We seek to answer two key research questions through our

feasibility analysis: (1) How much slack is present in cloud VMs

and by how much can these VMs be safely deflated without any

performance impact? (2) How does workload class and VM size

impact the deflatability of VMs?

3.1 Application Behavior under Deflation
We first present an abstract model to capture the performance

behavior of an application under different amounts of resource



Figure 2: Application behavior under di�erent levels of de-
�ation.

Figure 3: Application performance when all resources (CPU,
memory, I/O) are de�ated in the same proportion.

de�ation. Figure 2 illustrates this behavior. We assume that an ap-
plication running inside a cloud VM will have a certain amount
of slack�unused CPU and memory resources. Reclaiming these
unused resources represented by the slack will typically have negli-
gible performance impact on the application since they are surplus
resources; the behavior in this operating region is depicted by the
horizontal portion of the performance curve labelled slack in Figure
2. Once all of the slack has been reclaimed by de�ating the VM, any
further de�ation will actually impact performance. We assume that
initially this performance impact is linear with increasing amounts
of VM de�ation. For some applications, this behavior can even
be sub-linear, which means that a certain reduction in allocated
resources yields proportionately less performance slowdown. For
less elastic applications, however, the impact can be super-linear.
In either case, beyond a certain point�represented by the knee
of the curve�the performance drops precipitously, implying that
allocated resources are insu�cient for satisfactory performance.

This abstract model captures the three regions with varying per-
formance impacts on applications due to de�ation. Clearly, de�ating
slack is the simplest approach since it usually has little or no perfor-
mance impact. When additional resources need to be reclaimed, the
de�ation policy should ensure that such de�ation minimizes the
performance impact and does not push application performance
beyond the knee of the curve.

Figure 3 depicts this behavior for three di�erent applications. As
can be seen, di�erent applications have di�erent amounts of slack
(with SpecJBB not exhibiting any slack at all in this example), and
the size of the linear performance degradation region also varies
from application to application. The �gure illustrates the need to
take application's characteristics into account when reclaiming its
allocated resources using de�ation.

3.2 Usage-based Feasibility Analysis
3.2.1 CPU Deflation.We analyze VM traces of CPU utilization in
the Azure dataset to quantify their de�ation capability. The dataset,
which includes data from 2 million VMs, provides CPU utilization

Figure 4: De�ation can result in underallocated resources.

time series for each VM at 5-minute granularity. Importantly for us,
each VM trace is partitioned into one of three classes�interactive,
delay-insensitive, and unknown�depending on the type of applica-
tion resident in the VM. We analyze all three classes of VM traces
but pay particular attention to interactive applications, which tend
to be dominated by web-based services. To analyze the impact of de-
�ation, we assume that the CPU allocation of the VM is reduced by
a certain percentage and calculate the percentage of time for which
the maximumCPU usage over each interval in the original trace
exceeds this value. We observe that as long as the CPU utilization is
below this de�ated allocation, there will be no performance impact
on the application. However, during periods where the utilization
exceeds the allocation under de�ation (i.e., underallocation), the
application will experience a slowdown.

As shown in Figure 4, the resource utilization and de�ation
determine how much time a VM is underallocated. The total amount
of under-allocation (area of the utilization curve above the de�ated
allocation) is the decrease in application throughput. We want to
quantify the slack in the VMs under di�erent levels of de�ation
such that there is no performance impact on the application.

Figure 5 shows a box plot of the fraction of time spent by VMs
above the de�ated resource allocation (i.e., underallocated) for all 2
million VMs. Even at high de�ation levels (50%), the median VM
spends 80% of the time below the de�ated allocation. This result
indicates that even high de�ation levels of as much as 50% do not
lead to signi�cant resource bottlenecks for applications.

Since the Azure dataset labels each VM trace with the class of
application hosted by the VM, we break down the overall result
in Figure 6 by application type. Figure 6 depicts a box plot of the
fraction of time that VMs of di�erent application classes exceed
their de�ated allocations under di�erent levels of de�ation. The
�gure shows that interactive applications, which include web work-
loads, tend to have lower overall utilization and hence more slack
than delay insensitive batch workloads (presumably since they are
over provisioned to handle unexpected peak loads). Consequently,
interactive application VMs are more amenable to de�ation of their
surplus (slack) capacity. Thus, for any given de�ation level, inter-
active VMs see signi�cantlylessimpact in terms the CPU usage
exceeding the de�ated allocation. The percentage of time when the
interactive VMs get impacted ranges from 1% to 15%, as de�ation
percentage is varied from 10% to 50%. In contrast, batch jobs see 1%
to 30% impact. This result shows that interactive applications and
web workloads can be subjected to de�ation just like, and perhaps
more so, than delay-insensitive batch applications.

Figure 7 examines whether the VM size has an impact on its
ability to be de�ated. Based on the trace we partition VMs into 3
groups � small VMs with 2 GB RAM or lower, medium VMs with
up to 8 GB RAM, and large VMs with more than 8GB RAM, and
examine the percentage of time the VM CPU usage exceeds the



Figure 5: Fraction of time (i.e. probability) of CPU usage of
VMs being higher than di�erent de�ation targets.

de�ated allocation within each group. The �gure shows that VM
size has no direct correlation to the de�atability of a VM, and all
VMs see a similar performance impact under di�erent de�ation
levels regardless of VM size. The result implies that VMs of all sizes
are more or less equally amenable to de�ation.

Finally, Figure 8 examines the de�atability of VMs for VMs with
di�erent peak loads. We compute the95th percentile of CPU usage
for all VMs and partition VMs into four classes; those with low peak
utilization of less than 33%, those with moderate peak load between
33% and 66% peak utilization, those with higher load between 66%
and 80% utilization and �nally, the rest with high peak loads above
80%. As shown in the �gure, higher peak loads implies that VMs see
greater impact when de�ated since the peak will exceed the de�ated
allocation for longer durations. Interestingly, for de�ation levels
of up to 20%, all VMs, except the ones with peak load exceeding
80%, have enough slack to see minimal impact. The �gure generally
indicates that the peak load, represented by a high percentile of the
utilization distribution is a coarse indicator of the �de�atability�' of
the VM; VMs with lower peak loads are more amenable to de�ation.
3.2.2 Memory and I/O Deflation.We also analyze the memory,
disk, and network de�ation feasibility based on Alibaba's resource
traces [21] [ 15], that provide a time series of resource utilization
for their internal container-based interactive services. Note that
VM-based applications have a higher de�ation potential because
they are overprovisioned and must include additional resources for
the guest OS; thus this container-level analysis of Alibaba's cloud
applications provides a very conservative (lower-bound) estimate
of the actual de�ation potential.
Memory. We analyze the memory usage of the applications under
di�erent de�ation levels in Figure 9. Interestingly, as shown, the
fraction of time that the application spends above di�erent de�ation
thresholds is generally high. At �rst glance, this might suggest that
the high memory utilization leaves little slack to de�ate memory
(e.g., even at 10% memory de�ation, the applications would spend
more than 70% time underallocated).

However, further analysis of the memory usage traces indicates
that this is not really the case. First, the Alibaba memory traces
provide thetotal memory usage and do not provide a �ne-grain
breakdown of memory usage, such as such as working set size,
page-cache and disk-bu�er pages. Over 90% of the applications in
Alibaba trace are JVM-based services that overallocate memory
(for the heap) to reduce the garbage collection overhead. As is well
known, modern applications and operating systems aggressively
used unallocated RAM for purposes of caching and bu�ering. Hence,
the total memory usage shown in Figure 9 is not a true measure of
de�ation potential of applications.

Conventional wisdom holds that application performance will
be a�ected when the memory is de�ated below itsworking set

size, and de�ation of other memory used for caching or garbage
collection should have a lesser impact on performance. In fact,
our experiments have shown that, even when memory is de�ated
belowthe working set size, the performance degradation, while
noticeable, is not serve. For instance, Figure 3 shows the resilience
of Memcached, a highly memory-dependent application. Figure 14
shows that even SpecJBB (which is representative of the JVM-based
applications that comprise the trace) can have its memory de�ated
by up to 30% without signi�cant drop in performance.

To further analyze the true memory de�ation potential, we we
use the memory-bus bandwidth used by the di�erent applications
as a proxy metric for memory usage. As shown in Figure 10, we
see that the memory bandwidth usage is very low, with the mean
memory bandwidth utilization across all containers being less than
one-tenth of one percent, while the maximum is only 1%. This
indicates that the applications are not reading/writing to the RAM
in proportion to their memory allocations, and that the memory
de�atability should be signi�cantly higher than what is indicated
by Figure 9 alone.
Disk and Network. Finally, we examine the de�atability of disk
and network bandwidth in Figures 11 and 12 using the Alibaba trace.
We see that the usage of both I/O resources is very low. The boxplot
of application's disk bandwidth that rises above various de�ation
thresholds is given in Figure 11. The percentage of time the actual
disk bandwidth usage rises above various de�ated allocations is
low, indicating there is ample room to de�ate the allocated I/O
bandwidth. Even at a high de�ation level of 50%, containers are
underallocated less than 1% of the time.

Network usage (sum of normalized incoming and outgoing traf-
�c) is also low: in Figure 12 we can see that even this combined
network bandwidth is not impacted by even at high (70%) de�ation
levels, only su�ering underallocation 1% of their lifetime. Below
50% de�ation, the impact is near-zero and cannot be plotted.

Our analysis shows that low-priority VMs can be shrunk to �t
incoming VMs without preemption. De�ation allows providers to
continue o�ering high-priority traditional VMs, and sell unused
server space for low-priority VMs that can be de�ated. This allows
consumers to still have fully-resourced VMs available for a variety
of applications. Because the average resource utilization is low, it
makes sense for cloud providers to o�er low-priority VMs.

4 DEFLATABLE VIRTUAL MACHINES
In this section we describe how VM de�ation mechanisms can be
implemented using existing hypervisor mechanisms.
4.1 VM De�ation Mechanisms
VM de�ation requires the ability to dynamically shrink the re-
sources allocated to the VM. Modern hypervisors expose interfaces
to determine the current resource allocation of a VM and to dy-
namically modify this allocation. A cluster or cloud management
framework can use these hypervisor APIs to implement VM de�a-
tion mechanisms.

Our system implements two classes of de�ation mechanisms�
transparentmechanisms, which transparently shrink the VM's re-
source allocation, andexplicit mechanisms, where the de�ation
is performed in a manner that is visible to the guest OS, (and by
extension, to the applications and the application cluster manager).
In the former case, the guest OS and applications are unaware of the



Figure 6: Fraction of time that the CPU
usage of VMs is higher than di�erent
de�ation targets.

Figure 7: Breakdown of de�atability by
VM memory size.

Figure 8: Breakdown of de�atability by
their 95-th percentile CPU usage.

Figure 9: Memory usage of
applications.

Figure 10: Memory band-
width usage.

Figure 11: Disk bandwidth
de�ation feasibility.

Figure 12: Network band-
width de�ation feasibility.

de�ation and the VM simply runs �slower� than prior to de�ation.
In the latter case, since de�ation is visible to the guest OS and/or
applications, they can take explicit measures, if wanted, to deal
with de�ation. We describe each mechanism and a hybrid approach
that exploits the key bene�ts of both approaches.

4.2 Transparent VM De�ation
Since hypervisors o�er virtualized resources to virtual machines,
they can alsoovercommitthese resources by multiplexing virtual
resources onto physical ones. Transparent VM de�ation is imple-
mented using these hypervisor overcommitment mechanisms. For
example, the hypervisor allows virtual CPUs (vCPUs) of the VM to
be mapped onto dedicated physical CPU cores. Such an allocation
can be de�ated by remapping the vCPUs onto a smaller number
of physical cores using the hypervisor's CPU scheduler. Thus the
guest OS and applications inside the VM still see the same number
of vCPUs, but these vCPUs run slower.

In the case of memory, hypervisors allocate an amount of physi-
cal memory to a VM and multiplexes the VM's virtualized memory
address-space onto physical memory, via two-dimensional paging.
Memory de�ation thus involves dynamically reducing the physical
memory allocated to a VM.

In the case of network, one or more logical network interfaces
of a VM are mapped onto one or more physical NICs and a certain
bandwidth of the physical NICs is allocated to each vNIC by the
hypervisor. Network de�ation involves reducing the physical NIC
bandwidth allocated to the VM. Finally, in the case of local disks,
the I/O bandwidth allocated to each VM can be throttled.

With the above hypervisor level transparent techniques, the VM
and applications are oblivious of the de�ation, which is done at the
hypervisor level outside of the VM. The VM may get scheduled at
a lower frequency or have less physical memory, etc. Our de�ation
framework has been implemented in KVM and Linux using Linux's
cgroups facility. By running KVM VMs inside of cgroups, we can
control the physical resources available for the VM to use. For

de�ating CPUs, we use CPU bandwidth control by setting the CPU
shares of the de�atable VM. The memory footprint of a de�atable
VM is controlled by restricting the VM's physical memory allocation
by setting the memory limit in the memory cgroup. Similarly for
disk and network I/O, we use the respective I/O cgroups to set
bandwidth limits.

4.3 Explicit De�ation via Hotplug
Modern virtualization environments now support the ability to
explicitly hot plug (and unplug) resources from running guest oper-
ating systems. Explicit de�ation mechanisms use these hot unplug
techniques to reduce the VM's allocation in a manner that is vis-
ible to the guest OS and the applications. In the case of CPU, if a
VM hasn vCPUs allocated to it, its CPU resources are reclaimed
by unpluggingk out of n vCPUs. Hot plugging and unplugging
requires guest OS support, since it must reschedule/rebalance pro-
cesses and threads to a smaller or larger number of cores. Thus, the
de�ation is visible to the guest OS and applications. In the case of
memory, we use memory unplugging to inform the OS and applica-
tions of the resource pressure, which allows them to return unused
pages, shrink caches, etc. Explicit unplugging of NICs and disks is
generally unsafe, and we rely on the transparent hypervisor-level
mechanisms for these.

Hot unplugging has a safety threshold�unplugging too many
resources (e.g., too much memory) beyond this safety threshold can
cause OS or application failures. Furthermore, hot unplug can only
be done in coarse-grained units. For example, it is not possible to
unplug 1.5 vCPUs.

4.4 Hybrid De�ation Mechanisms
Both transparent and explicit de�ation have advantages and dis-
advantages. Explicit de�ation�by virtue of being visible, allows
the OS and applications to gracefully handle resource de�ation.
However, de�ation can only be done in coarse-grained units and
has a safety threshold. Transparent de�ation can be done in more
�ne-grained slices and has a much broader de�ation range than



explicit de�ation. It does not require any guest OS support but can
impose a higher performance penalty since the OS and applications
do not know that they are de�ated.

Our hybrid de�ation technique combines both mechanisms to
exploit the advantages of each. Initially, a VM is de�ated using ex-
plicit de�ation until its safety threshold is reached for each resource.
From this point, transparent de�ation is used for further resource
reclamation to extract the maximum possible resources from the
VM under high resource pressure. Figure 13 presents the high-level
pseudo-code of our hybrid de�ation approach. The key challenge is
to determine the hot unplug safety threshold so as to switch over
from explicit to transparent de�ation.

1 def d e f l a t e _ h y b r i d ( t a r g e t ) :
2 h o t p l u g _ v a l = max ( ge t_hp_ th resho ld ( ) , round_up ( t a r g e t ) )
3 d e f l a t e _ h o t p l u g ( h o t p l u g _ v a l )
4 d e f l a t e _ m u l t i p l e x i n g ( t a r g e t )

Figure 13: Pseudo-code for hybrid resource de�ation.

For de�ating CPUs, we �rst set the hotplug target by rounding up
the target number of vCPUs (line 2 in Figure 13). Then the cgroups
based CPU multiplexing de�ation can de�ate the VM the rest of the
way. The hotplug operation may not always succeed in removing all
the CPUs requested�the guest OS unplugs the CPU only if it is safe
to do so. If the number of reclaimed CPUs via hotplug is less than
the number requested, then the multiplexing-based CPU de�ation
takes up the slack. When de�ating memory, we set the hotplug
threshold by using the guest OS's resident set size (RSS)�since
unplugging memory beyond the RSS results in guest swapping, and
we presume that it is safe to unplug as long as the VM has more
memory than the current RSS value.

Our hybrid de�ation mechanisms can be used to reclaim signi�-
cant amounts of CPU, memory, and I/O resources from applications.
When de�ating memory, hybrid de�ation allows the guest OS to
hot-unplug unused memory, which can improve performance, as
shown in Figure 14. The �gure shows the mean response time with
the SpecJBB 2015 benchmark, and we see that the performance
with both transparent and hybrid de�ation is largely una�ected
up to 40% de�ation, and hybrid de�ation improves performance by
about 10%. Additional results with CPU de�ation and with other
applications are presented later in Section 7.

5 CLUSTER DEFLATION POLICIES
In this section, we describe how the mechanisms discussed in the
previous section can be used to implement cluster-level de�ation
policies. We assume a cloud resource management framework that
multiplexes physical servers in the cluster across two pools of VMs:
non-de�atable higher-priority VMs and de�atable lower-priority
VMs. When there is surplus capacity in the cluster, the cloud man-
ager allocates these resources to lower priority VMs (without de�at-
ing them). When demand from higher-priority VM causes resource
pressure, resources from lower priority VMs are reclaimed using de-
�ation and re-assigned to higher priority VMs. Below, we describe
policiesfor doing so that determine how much each VM is actually
de�ated by, and under what conditions. Our policies assume the
worst-case linear correlation between de�ation and performance,
as shown by Figures 3 and 4. Which policy to apply we leave up
to cloud providers as they have di�erent trade-o�s and capabil-
ities that we discuss in Section 7.4. The policies we propose are

Figure 14: Performance of SpecJBB 2015 with transparent
and hybrid memory de�ation.

implemented at the level of a physical server. That is, the de�ation
of a VM is determined by the �local� conditions and the resource
pro�les of co-located VMs.

5.1 Server-level De�ation Policies
Our system uses three policies for de�ation�proportional, priority-
based and deterministic�that we describe below.

5.1.1 Proportional Deflation.In the simplest case, we assume that
all VMs that fall into two broad classes: high-priority non-de�atable
VMs (aka on-demand), and low-priority de�atable VMs. A server
may host VMs of both classes.

Proportional de�ation involves de�ating each low priority VM
in proportion to its original maximum size. More formally, sup-
pose we need to reclaimRamount of a particular resource (CPU,
memory, etc.) fromn de�atable VMs, and supposeMi is the orig-
inal unde�ated allocation of that resource allocated to VMi . The
proportional de�ation policy reclaimsxi amount from each VMi :

xi = Mi � � 1 � Mi ; (1)

where � 1 is determined by the constraint that
Í

xi = R, and is
given by� 1 = 1 � ¹ R•

Í n
i Mi º. Intuitively, we want VMs to de�ate

in proportion to their size, to avoid excessively de�ating small VMs.
Note that a new incoming VM may be de�atable, and is included in
the pool ofn de�atable VMs, and can thus start its execution in a
de�ated mode under high resource pressure conditions.

This simple proportional de�ation policy forms the basis of more
sophisticated policies for addressing various cluster management
requirements. For instance, some VMs may have a �limit� to their
de�atability or QoS minimum requirements if de�ated by more
than, say, 80%. Applications can provide these requirements to the
cluster on provisioning. The cluster manager enforces the minimum
resource allocation (mi ) with proportional de�ation policy, and
reclaim resources from each VM using the following relation:

xi = ¹Mi � mi º � � 2 � ¹Mi � mi º (2)

The proportional de�ation is performed for each resource (CPU,
memory, disk bandwidth, network bandwidth) individually. Enforc-
ing the minimum resource allocation limits can minimize applica-
tion performance degradation, but can reduce the overcommitment
(and possibly revenue) of cloud platforms.

5.1.2 Priority-based Deflation.Since the impact of de�ation is ap-
plication dependent, a cloud platform can o�er multiple classes of
de�atable VMs. These priority levels in�uence how much each VM
is de�ated by, and can be o�ered by cloud providers at di�erent



prices. These priority classes can be chosen by the user based on
their price sensitivity and application characteristics.

The proportional de�ation policy (Equation 1) can be extended
to incorporate priorities through a weighted proportional de�ation
framework. Let� i 2 ¹0;1º be the priority level of VM-i . Then,

xi = Mi � � 3 � � i � Mi ; (3)
where low� i values indicate lower priority and higher de�atability.

VM priorities can also be applied to determine the minimum
resource allocation levels (mi ) of the VMs. Intuitively, VMs with
a higher priority (� i ) have a lower de�ation tolerance, and thus
largermi values. For instance, cloud platforms can determine the
VM's minimum resource allocation level as:mi = � i � Mi , and we
can then extend the minimum-level-aware de�ation (Equation 2)
with weighted proportional de�ation:

xi = ¹Mi � � i Mi º � � 4 � � i ¹Mi � � i Mi º (4)

5.1.3 Deterministic Deflation.With the above proportional de�a-
tion policies, a VM's de�ation level is determined dynamically based
on the local resource pressure on the server. In some cases, cloud
platforms and applications may require a more deterministic de-
�ation policy, that only de�ates VMs to a pre-speci�ed level. VM
priorities can be used for determining the de�ation levels of VMs�
with higher priorities (� i ) indicating lower de�ation. In this case,
de�ation is binary: either the de�atable VMs are allocated 100%
of their resource allocation (Mi ), or � i � Mi . In case of multiple
de�atable VMs on a server, VMs are de�ated in decreasing order of
� i 's until su�cient resources are reclaimed to run the new VM.
Rein�ation: Both our proportional and priority-based policies can
also rein�ate previously de�ated VMs when additional resources
become available. WhenRfree additional resources have become
available, we rein�ate VMs proportionally by settingR = � Rfree in
equations 1, 2, 3, 4, and e�ectively run the proportional de�ation
backwards in all the cases. For deterministic de�ation, the highest
priority VMs are rein�ated �rst.

5.2 De�ation-aware VM Placement
The initial placement of VMs onto physical servers also a�ects
their de�ation. Conventionally, for non-de�atable VMs, bin-packing
based techniques are used by cluster managers to place VMs onto
the �right� server in order to minimize fragmentation and total
number of servers required. This is often solved through multi-
dimensional bin-packing lens. The VM's CPU, memory, disk and
network resource needs as well as the resources available on each
server are multi-dimensional vectors. Policies such as best-�t or
�rst-�t can be used to choose a speci�c server. We use the notion of
��tness� for placing VMs onto a server. Similar to [19], we use the
cosine similaritybetween the demand vector and the availability

vector to determine �tness:�tness¹D;Aj º =
Aj �D

jAj j jDj . Here,D is the

demand vector of the new VM, andAj is the resource availability
vector of serverj . If Aj = 0, i.e. there are no available resources,
a small value� can be added to it, or the server can be removed
from consideration, to prevent division by 0. The availability vector
is given byAj = Totalj � Usedj + ¹de�atablej •overcommittedj º,
wherede�atablej is the maximum amount of resources that can
be reclaimed by de�ation andovercommittedj is the extent of the
de�ation already done. By evaluating all severs and considering
their level of overcommitment, this approach prefers servers with
lower overcommitment, and thus achieves better load balancing.

5.2.1 Placement With Cluster Partitions.The above VM placement
approach results in VMs of di�erent priority levels sharing physical
servers. This �mixing� can be bene�cial and improve overall cluster
utilization, since lower priority VMs can be de�ated to make room
for higher priority VMs. However, increasing the number of co-
located de�ated VMs can potentially result in higher performance
interference (aka noisy neighbor e�ect).

While performance interference can be mitigated through stronger
hypervisor and hardware-level isolation techniques, it can also be
addressed by VM placement. The key idea is topartition the cluster
into multiple priority pools, and only place VMs in their respective
priority pools. Within a pool, we use the bin-packing approach for
de�atable VMs and continue to use either proportional or deter-
ministic de�ation policies on the individual servers. The size of the
di�erent pools can be based on the typical workload mix.

Thus, higher priority VMs will generally run on servers with
lower overcommitment and lower risk of performance interference,
and lower priority VMs face higher risk of overcommitment. This
approach also allows cloud operators to limit and control the distri-
bution of overcommittment of di�erent servers, which reduces the
risk of severe performance degradation due to overcommitment.

A possible downside of cluster partitions is that if a partition
becomes �full� even after de�ating all its VMs to their maximum
limits, new VMs may have to be rejected using the admission control
mechanism. This can reduce cluster overcommitment and revenue.

5.2.2 Pricing Considerations.Our work assumes that de�atable
VMs are priced di�erently from traditional on-demand VMs. Similar
to preemptible VMs, a cloud provider may choose to o�er de�atable
VMs at �xed discounted prices (e.g., at 60-80% discount). The cloud
provider may also price de�atable VMs based on priority levels,
where the priority level determines the proportion by which VM
can be de�ated and also the discount in the price. Finally, the cloud
provider may use variable pricing where the de�atable VM is billed
based on the actual allocation of resources over time, with lower
prices charged during periods of de�ation. The di�erent pricing
policies, when combined with placement and server-level de�ation
policies, result in di�erent levels of application performance, clus-
ter utilization, and revenue. These tradeo�s are presented in the
evaluation section.

6 IMPLEMENTATION
We have implemented all the de�ation mechanisms and policies
discussed in Sections 4-5 as well as de�ation-aware web applica-
tions, as part of a de�ation-aware cluster manager framework. Our
system is comprised of two main components (see Figure 1). A cen-
tralized cluster manager implements and invokes the VM placement
policies and generally controls the global-state of the system. In
addition, we run local de�ation controllers that run on each server.
These local controllers control the de�ation of VMs by responding
to resource pressure, by implementing the proportional de�ation
policies described in section 5. Both the centralized cluster manager
and the local-controllers are implemented in about 4,000 lines of
Python and communicate with each other via a REST API.
De�ation Mechanisms. Our prototype is based on the KVM hy-
pervisor [26], and uses the libvirt API for running VMs and for
dynamic resource allocation required for de�ation. Our hybrid
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