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Abstract-Cloud computing has become popular for shared 
hosting of third-party applications. A cloud platform may mul­
tiplex virtual machines running different customer applications 
onto a single physical server, raising the potential for performance 
interference between such applications. In particular, when a 
hypervisor shares the file system page cache between virtual 
machines, as is common in Linux environments, it is possible for 
one VM to impact the performance seen by other co-located VMs. 
To address this drawback and improve performance isolation, we 
design a page cache which is partitioned by VMs. Such a design 
provides the ability to control fine-grained caching parameters 
such as cache size and eviction policies individually. Furthermore, 
the deterministic cache allocation and partitioning provides im­
proved performance isolation among VMs. We provide dynamic 
cache partitioning by using utility derived from the miss-ratio 
characteristics. 

We implement our page cache architecture in the Linux 
kernel and demonstrate its efficacy using disk image files of 
virtual machines and dif1'erent types of file access patterns by 
applications. Experimental results show that the utility-based 
partitioning can reduce the cache size by up to an order of 
magnitude while increasing cache hit ratios by up to 20%. Among 
other features, the per-file page cache has fad vise integration, 
a scan-resistant eviction algorithm (ARC) and reduced lock­
contention and overhead during the eviction process. 

I. INTRODUCTION 

Cloud computing has emerged as a popular paradigm for 
running a variety of third-party applications. In such an envi­
ronment, customers lease computational and storage resources 
from the cloud platform and pay for those resources on a pay­
as-you-go basis. Cloud platforms provide a number of benefits 
such as on-demand allocation of server and storage resources. 
A typical cloud platform runs customer applications inside 
virtual machines and multiple virtual machines (VMs) from 
different customers may be mapped onto each physical server. 

Since multiple VMs can be co-located on a server, there 
is a potential for performance interference between co-located 
VMs, and the underlying hypervisor must provide performance 
isolation between these VMs. Modern hypervisors provide 
strong mechanisms to partition resources such as the CPU­
for example, by dedicating CPU cores to VMs or partitioning 
CPU bandwidth across VMs. While resources such as CPU 
and network can be partitioned, resulting in performance 
isolation, not all resources are isolated in this manner. In 
particular, the in-memory file system page cache is a shared 
resource in hypervisors, particularly in Linux environments. 
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A page cache is a memory buffer that caches frequently 
accessed data on disk [29]. Achieving a high hit rate for the 
page cache is critical for achieving good 110 performance in 
VMs. However, when the page cache is shared across VMs, 
it is possible for one VM to cause eviction of cached page 
belonging to another VM, resulting in higher cache misses 
and lower performance. Such performance interference can be 
exacerbated in cloud environments where co-located VMs run 
arbitrary applications belonging to different customers. 

The primary cause for such interference is the use of a 
unified page cache by the underlying hypervisor, and the use 
of a LRU-based eviction policy that operates on a single LRU 
list across all VMs. We argue that unified caches result in 
poor utilization and interference and the lack of fine-grained 
control over the page cache contents, size, and eviction policy 
leads to non-deterministic and suboptimal resource allocation. 
Furthermore, the LRU policy and unified nature implies that 
the page cache is susceptible to cache-pollution occurring due 
to large sequential reads/writes from VM applications. This 
cache pollution leads to enlarged cache sizes, and decreases the 
free memory available on the physical server. This reduction 
in free memory results causes increased memory pressure for 
the running VMs and forces cloud providers to consolidate a 
smaller number of VMs on their physical servers. 

To address these drawbacks, in this paper, we propose a new 
page cache design, that logically partitions the page cache on a 
per-VM basis. We call our page cache the per-VM page cache. 

Since each VM gets it own page cache, the hypervisor can 
provide better performance isolation across VMs. Furthermore, 
each VM's cache can be managed differently in a manner 
that is best suited to that VM's application, which can im­

prove performance. For example, each VM can have different 
eviction algorithms depending on their access-patterns, usage, 
priority, etc. The per-VM page cache allows more fine-grained 
control over a globally shared resource (the page cache) among 
applications and users and yields better performance isolation 
and service differentiation. 

Our per-VM cache partitioning technique enables setting the 
cache size, eviction policy, etc. for each VM individually. In 
addition to manual control of these parameters from userspace, 
we have also devised a utility-based cache partitioning heuris­
tic which seeks to minimize miss-ratios. Our per-VM page 
cache is a drop-in replacement for the existing Linux page 
cache. We also allow users to control cache behaviour using 
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Fig. 1. The logical architecture of the Page Cache interface. File-I/O cache 
hits get serviced without going through the file-system itself. 

the existing fadvise POSIX system-call and the procfs 
kernel interface. The VM-based partitioning reduces cache 
pollution by restricting the cache size of an individual VM. 
While some of these benefits could be obtained in unified 
page caches by using containers [16], [23] or control-groups 
[2], the partitioned-cache yields a much cleaner design and 
implementation. 

In addition to improving system performance by increasing 
cache hit ratios and providing service differentiation, our per­
VM cache can also provide additional benefits. For example: 
when using KVM [17] to run virtual machines, there exist 
two levels of the page cache [26]. The guest VMs maintain 
a page cache in their private address-space, while the host 
OS maintains a second-level cache which is shared by all the 
VMs. This setup leads to double-caching - duplicate pages 
are present in the caches. Since a virtual disk for a virtual 
machine is a file, the per-file cache allows fine-grained control 
of the second level host cache in virtual machine hosts. The 
size of the second-level host page cache for each VM can be 
specified, along with a special eviction algorithm tuned for 
secondary caching (such as Multi-Queue [33]). This allows 
improved VO performance in the guest virtual machines and 
smaller host page caches, which allows more virtual machines 
to be hosted. Furthermore, the cache partitioning also increases 
the isolation among virtual machines. 

We have implemented our per-VM page cache as a small, 
non-intrusive modification (1500 line patch) to the Linux 
kernel. We conduct an experimental evaluation of our pro­
totype to demonstrate its efficacy using disk image files of 
virtual machines and different types of file access patterns by 
applications. Our experimental results show that the utility­
based partitioning can reduce the cache size by up to an order 
of magnitude while increasing cache hit ratios by up to 20%. 

The rest of this paper is structured as follows. We present 
background on the Linux page cache architecture in Section II. 
The design and implementation of our per-VM page cache is 
presented in Sections III and IV. Finally, Sections V, VI, 
and VII present experimental results, related work and our 
conclusions. 

II. BACKGROUND & MOTIVATION 

Cloud computing platforms are designed to run third-party 
applications inside virtual machines; each physical server may 
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run one or more virtual machines and the hypervisor is 
responsible for allocating resources to each co-located VM. 
There has been significant research on reducing performance 
interference between co-located VM applications [14]. Place­
ment techniques use intelligent placement to avoid co-locating 
conflicting application on the same server, thereby avoiding 
such interference. Resource management techniques employed 
by the hypervisor can also partition various server resources 
across VMs to provide performance isolation-VMs may 
be allocated a certain number of CPU cores, memory size, 
network interfaces, virtual disks, and VO bandwidth [13], 
[28]. By  enforcing the allocation of physical resources, the 
hypervisor ensures that the VMs do not interfere with each 
other and can run in isolation, as if they were the only users 
of the resources allotted to them. 

In this paper, we focus on Linux-based virtualization, which 
is common in many popular commercial cloud platforms. In 
this case, the Linux kernel, which normally functions as the 
OS, also takes on the role of the hypervisor-virtual machines 
using a virtualization technology such as KVM or Xen then 
run on top of this Linux-based hypervisor. Interestingly, while 
Linux allows partitioning of many common resources such 
as CPU and network, the page cache is a shared resource 
within Linux. The page cache is a memory buffer that caches 
recently accessed disk blocks, which allows VMs to improve 
VO performance due to this caching (Figure 1 depicts how file 
VO operations use the page cache to enhance performance). 
Since virtual machines use virtual disks, which are typically 
files located on the hypervisor's native file system, all disk 
VO operations of the VM translate to filesystem operations on 
the hypervisor(Figure 2). This additional level of indirection 
for disk VO operations uses the hypervisor page cache as an 
additional cache level which sits between the physical disk 
and the VM. 

Consequently, a shared page cache in a Linux-based hy­
pervisor has several performance ramifications for co-located 
VMs. Most importantly, the shared page cache weakens the 
performance isolation among VMs, since the disk 110 of all 
VMs has to contend for the shared cache space. A VM having 
more data in the hypervisor page cache has higher disk VO 
rates, since a larger fraction of VO requests can be fulfilled 
with the in-memory hypervisor page cache instead of hitting 
the much slower physical disk. Similarly, a VM starved of 
hypervisor page cache may suffer in performance even though 
sufficient physical resources (CPU, memory) are available 
to it. Thus, page cache sharing among VMs is a threat to 
performance isolation in cloud environments. 

Hypervisor page cache 

Fig. 2. The hypervisor page cache is shared by VMs. 
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A. Linux page cache design 

KVM [17] adds virtualization capabilities to Linux, and the 
default Linux page cache is used by all the VMs. We shall 
now see the architectural reasons for the page cache sharing, 
and also describe some of the other performance issues caused 
by the existing page cache design. 

The Linux page cache implementation is highly 
sophisticated-it implements a completely lockless read-side 
page cache [21], and stores the offset -+ page mapping 
in a per-inode radix-tree. Multiple files may correspond to 
a single inode. In Linux, address-space refers to a structure 
referenced by the inode structure. The address-space structure 
contains the radix-tree mapping. Throughout this paper, we 
use the terms file, inode, and address-space interchangeably. 

Linux has a unified page-eviction mechanism, wherein every 
page(cached, anonymous, slab) in the system is present in a 
single logical LRU list. Thus, there is no dedicated LRU list 
for the file cache pages, and cache pages compete to stay in 
memory with other pages (belonging to applications, kernel 
slab caches, etc.). Page eviction is controlled by the swap­
daemon (kswapd). A variant of the LRU-2 [22] page-eviction 
algorithm is implemented. 

This unified page cache design combined with the LRU-2 
eviction results in a large amount of performance problems: 
Performance interference: Since every file I/O operation 
goes through the page cache, every file I/O operation per­
formed by a VM also goes through the hypervisor page 
cache because the virtual disk of the VM is a file on the 
hypervisor's filesystem. Thus, the cache occupancy of a VM 
depends on the rate and access patterns of its disk I/O. Because 
the hypervisor's page cache is shared between VMs with no 
constraints, VMs may be starved of cache space and suffer in 
performance. For example, a VM with a largely sequential 
disk access pattern (like in the case of media streaming 
servers) has a larger amount of data going through the page 
cache when compared to a VM doing random I/O (as is the 
case for database servers). Thus the performance of the VMs 
depends on their co-location, something which cloud providers 
strive to avoid, because they want to provide the same VM 
performance regardless of the other VMs co-resident on the 
physical servers. 
Lack of QoS knob: Cloud providers and administrators may 
want to control the allocation of the hypervisor page cache 
to VMs, and treat it as a quality-of-service knob. The current 
page cache design prohibits this. 
Caching while swapping: The unified LRU lists for page 
eviction (with all system pages on a single list) presents several 
problems. The problem of swapping while caching (illustrated 
in Figure 3) occurs when cache pages are more recent than the 
swapped anonymous pages. In extreme cases this leads to VMs 
being killed by the Out-Of .. Memory Killer mechanism - even 
when there exist sufficient memory for the VMs. This problem 
occurs because of the inability to specify hard limits on the 
size of the page cache (relative to total memory size). Although 
the prioritization of cache pages vis-a-vis anonymous pages is 
dynamically controlled by heuristics in the kernel, it is not 
always optimum. 
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Fig. 3. Memory vs time graph of an 110 intensive workload (from [26]). 
The system starts swapping pages to disk even in the presence of a large page 
cache. 

Cache eviction algorithm: At the heart of the caching-while­
swapping problem is the inadequacy of LRU-2, which is not 
scan resistant-a sequential read of a large file leads to the 
cache being "polluted" by the recently read pages. Modern 
caching algorithms such as the Adaptive Replacement Cache 
(ARC) [19] or LIRS [15] have been shown to be significantly 
superior to LRU .. k, are scan-resistant, and seem to require 
fewer magic-parameters. 

Second level Caching: There exist a multitude of situations 
where the page cache is part of a hierarchy of caches. When 
using Linux to run virtual machines using KVM(which is 
part of the Linux kernel), the host page cache serves as a 
second level cache because the guest VMs maintain a cache 
as well. This leads to double caching [26], with pages present 
in both host and guest caches. Guest I/O performance can 
be improved if the host cache implements some algorithm 
specifically designed for secondary caches such as MQ [33]. 

Scalability: A single LRU list consisting of millions of 
pages presents numerous difficulties. On systems with a large 
amount of memory, the time required to complete the LRU 
list-scan is prohibitively large. With large scan intervals, the 
CLOCK heuristic ceases to be effective because it simply 
divides the pages into active and inactive pools with no 
ordering within the pools themselves. The virtual-memory 
system thus has an imprecise view of page access patterns 
and working-set size. Cold pages thus stay on the LRU list 
(and thus in memory) much longer because of kswapd's delay 
in reaching them. This leads to an inflation in the overall 
cache size without any benefits, since the cold pages are never 
going to be used in the future. Increasing the page scanning 
frequency would alleviate the problem - but at the cost 
of increased overhead due to traversal of the LRU list and 
especially the costs incurred due to acquiring/releasing the 
LRU-list spinlock for every page during every scan. Thus, 
the current page cache design needs an overhaul if it is to 
keep up with exponentially increasing DRAM capacities (in 
accordance with Moore's law). 
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Fig. 4. The architecture of the per-VM-cache. Each VM has its own cache 
manager, and the reaper maintains a list of all VMs in LRU order. 

III. PER-VM PAGE CACHE DESIGN 

We now describe the design and architecture of the per-VM 
page cache. The per-VM page cache is a drop-in replacement 
for the existing Linux page cache and provides the same 
caching semantics to user-space processes (which includes 
KVM VMs). 

The primary focus of the redesign is to split the page 
cache from a single large shared cache to multiple, inde­
pendent caches. Each VM has its own, private, hypervisor 
page cache, which is unencroachable by other VMs. This 
separation provides performance isolation and QoS control for 
the VMs. The per-VM page cache is also configurable by the 
hypervisor and VM-management layer (such as OpenStack) on 
a per-VM basis. That is, the cache size and other properties 
such as eviction algorithm can be controlled for every VM 
individually, and the per-VM cache enforces these policies. 

We note that this page cache redesign is completely at the 
hypervisor level, and VMs do not have to be modified in any 
way to avail the performance benefits. The VMs will only 
observe higher disk VO performance (because of the cache 
separation) and other performance isolation benefits. 

Figure 4 illustrates the high-level architecture. There are 
three major components : (i) an offset-to-page mapping which 
is implemented as a radix-tree, (ii) the per-VM cache manager 
which tracks the pages present in the radix-tree for the purpose 
of accounting and eviction, and (iii) the reaper thread which 
maintains the list of VMs for the purpose of eviction of pages. 
The key point is that the pages belonging to VM are not put on 
the global LRU lists. Instead, all pages of a VM are handled by 
its corresponding cache manager. The cache manager handles 
radix-tree hits, misses, and deletes. This way, we achieve 
isolation between VM page caches, and can have different 
cache configurations and algorithms for different VMs. We use 
locks for every VM's radix tree for synchronizing concurrent 
updates, and a global lock for the reaper thread for guarding 
the VM list. 

A key feature of our design is that all the caching decisions 
are local to a VM, and are made by the VM's cache manager. 
The cache manager is delegated the task of handling the VM's 
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cache pages. The cache manager maintains some sort of a page 
index (usually some variant of the LRU list) to keep track of 
page hits, misses, and evictions. Any caching algorithm such 
as LRU, ARC, LIRS, etc. can be used in the cache-manager 
module. For our prototype, we have implemented CAR [19] 
and FIFO (First In First Out) eviction algorithms. The cache 
manager has the task of ensuring high hit rates for the VM 
given cache space constraints. It meets this by evicting pages 
when full and when the reaper shrinks the cache for a VM. It 
can also ask the reaper for additional cache space. 

The cache partitioning is done by the reaper-thread, which 
balances the size of each VM's cache as well as the global 
page cache size (total number of pages present in all the 
page caches). The primary weapon of the reaper is the ability 
to evict/reap pages. The reaper maintains a list of all active 
cache-managers (one cache manager per VM), and requests the 
corresponding cache-manager to evict pages. The VMs in the 
reaper-list are ordered by least recently used. Like any other 
LRU list in the kernel, a CLOCK approximation is used. The 
reaper-list is updated by the reaper-thread whenever evictions 
have to be performed. Thus, the least recently used VMs are 
the victims of the reaping, and the VM's cache-manager gets 
to choose which pages to evict from their cache. 

The reaper implements three important functions: 

1) Make space for new VM's cache by evicting pages from 
other VM caches. 

2) Make space for a VM's cache by increasing the total 
cache allocation. This may result in increased swapping. 

3) Shrink total page cache if pressure on anonymous mem­
ory is high. 

The reaper is called by the cache managers (Figure 4) when 
they request for additional space (either for a new VM, or if 
the cache manager deems that the VM could benefit from 
additional cache). All the reaper's external interfaces are non­
blocking, and simply update the number of pages to reap. The 
thread periodically runs and evicts the requested number of 
pages in an asynchronous manner. 

A. Utility based Cache Partitioning 

While our per-VM cache implementation can be used for 
implementing strict limits on the cache-sizes for various VMs 
(through the sysfs kernel interface or the fadvise system­
call), general situations demand an adaptive solution to deter­
mine the cache sizes of various VMs. Page cache partitioning 
is important to improve the cache hit ratios and overall VO 
latency. A good partitioning ensures that every VM gets the 
"right" amount of page cache at all times, depending on the 
total space available for caching and the access patterns of the 
VMs. To determine what the "right" partitioning is, we use 
utility as a metric. 

For systemwide page caches, there exist two important 
dynamically changing values: the number of pages cached for 
a given VM, and the total number of page cache pages. In 
systems with a global LRU list (current Linux design), these 
values are not explicitly manipulated, but change depending 
on the number of pages evicted and added. One key advantage 
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of system-wide LRU approach is that it naturally adapts to the 
changes in workload, system-load, and memory pressure. 

With a partitioned page cache, manipulating these parame­
ters (cache size of each VM and the global cache size) is an 
explicit task. While very sophisticated marginal-utility based 
cache partitioning approaches [24], [30] can be attempted, we 
have implemented simple and light-weight adaptive heuristics 
to manage the cache sizes. Part of the reason we have not 
considered complicated heuristics is that the insertions and 
deletions from the caches are performed from inside critical 
sections (thus holding spin locks) and need to be extremely 
fast. 
We now present a formal treatment of the cache partitioning: 

Each VM i, when launched, is soft-allocated Ci number 
of pages in the hypervisor page cache. This represents the 
maximum possible size that the cache allocation can grow. 
If this maximum size is reached, then there are two possible 
cases: 

1) The page-eviction algorithm of VM-i evicts pages to 
make room for new pages. 

2) The VM's cache controller asks for an increase in Ci. 
The cache-partitioning problem is thus: Given n VMs, with 

a total of M physical memory pages present in the system, 
determine Ci and F, where F = L:n Ci and F + A = M, 
where A is the number of 'other' pages which are managed by 
kswapd. There may be user and system-defined constraints on 
the minimum and maximum limits for each Ci. The objective 
is to assign values to Ci so as to minimize the expected number 
of cache-misses, given recent cache access history. 

In our implementation, a VM's hypervisor page cache size 
(Ci) is allocated proportional to the VM's marginal utility of 
the cache. The cache utility of a VM [24] is the the benefit 
it gets from an extra cache page allocated to it. The benefit 
is measured in terms of decrease in the number of misses 
that the VM encounters. Marginal Utility(MU) is function of 
cache size, and is the slope of the Miss-Ratio-Curve. Thus, 

MUs = miss(s + 1) - miss(s) (1) 

Where misses) is the number of misses that occur with a 
cache size of s. The optimum partition of a cache among k 
VMs is obtained by solving: 

Total Utility = Uf'(h) + Uf2(h) + ... + Uf k (Jk ) (2) 

Where U(Ji) is the utility function of VM k Assuming a 
cache size of F, an additional constraint is: 

F = Xl + X2 + ... + Xk (3) 

Thus, given accurate and complete miss-ratio curves, a 
cache can be partitioned optimally. This general cache­
partitioning problem is NP-Complete. However, if the util­
ity functions are convex, then a simple greedy algorithm 
suffices [24]. The miss-ratio based utility function as de­
fined above depends on the VM's access-pattern (sequential, 
random, cyclic, etc) and is also dynamic in nature. Miss­
ratio curves are obtained by running the LRU stack-distance 
algorithm [6] on an access-trace of a VM. 

An important point to note is that we also consider the read­

ahead successes when determining the utility. If the read-ahead 
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success-rate is very high, then the VM is running a sequential 
access application, which will most likely not benefit from the 
extra cache. Therefore the utility is calculated as: 

U · 1 · 
Misses - (Read Ahead Successes) 

tI Ity = (4) 
Total Accesses 

This allows us to quickly detect sequential accesses and 
not waste precious cache on them. This approach also nicely 
integrates with the ARC's 'single-use' list [19], since we can 
potentially also use the shadow-list success-rate as a guide for 
sequentiality and utility. That is, a VM with very high hits 
in the shadow-list should get a larger cache. A shadow-hit 
implies a cache-hit had the cache been double the size, thus 
is a perfect input for a utility function. 

VM cache shrinking is handled by the reaper thread since it 
is incharge of the evictions. As mentioned earlier in Section III, 
the VMs are present in an LRU order on the reaper list. The 
least recently used VM is chosen as the victim. The number 
of pages to evict from a victim VM is proportional to the size 
of the VM. This ensures that any "wrong" decisions by our 
allocation strategy do not cause catastrophic damage to the 
performance of VMs with small page cache footprint. 

In our current implementation, the total space allocated for 
all the VMs in the cache F, keeps growing until the system 
starts to swap. On swapping, it decreases to reduce the memory 
pressure. We integrate with the existing page-eviction metrics 
of pages scanned and pages evicted, which are used by kswapd 
to determine the proportion of VM page cache and anonymous 
pages to keep/evict. 

It must be emphasized here that our design incorporates 
support for both adaptive and user-specified changes for all 
parameters, including cache sizes and growth-rate for each 
VM. Users/processes can control the VM's cache allocation 
via the kernel procfs interface or by using the fadvise 
system-call. The adaptive allocation and partitioning heuristics 
are the default in case no allocation-policy is specified from 
userspace. 

IV. IMPLEMENTATION 

Our per-VM page cache is implemented in the Linux kernel 
as a drop-in replacement for the existing unified cache. Our 
implementation is restricted to the virtual-memory subsystem 
of the kernel, and every effort has been made to minimize the 
footprint of our changes. The total size of the patch required 
for implementing the per-VM cache is about 1500 lines. 

In order to implement the partitioned cache, we steal 
pages destined for the unified page cache by removing them 
from the systemwide LRU list and by putting them on the 
Un-evictable LRU list. This prevents the swap daemon 
from touching these pages, and results in the LRU lists con­
taining only non-cache pages (anonymous, slab). Our design 
does not require any changes in the management/eviction of 
the LRU lists-that task is still performed by kswapd. 

Page cache pages are managed by putting them in a per-VM 
cache manager. Each VM's cache manager maintains its own 
cache state: the size, eviction-algorithm are all independently 
configurable. The existing Linux LRU-2 implementation is 
replaced by the CAR [5](CLOCK with Adaptive Replacement) 
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Value Symbol Adaptive change 
VM page cache-size C Increases when miss-rate exceeds global miss-rate. Decreases when hit-rate is lower than global hit-rate 
Total cache size F-size Increases when free-space exists. Decreases during swap activity and when swap daemon is frequently 

scanning anonymous pages for eviction 

TABLE I 
SUMMARY OF CACHE ALLOCATION PARAMETERS 

algorithm. CAR is the CLOCK approximation of the Adaptive 
Replacement Cache(ARC) [19]. Our CAR implementation is 
only around 300 lines of code, compared to the -2000 lines 
required for the existing Linux page eviction implementation. 

The file-cache eviction and free-space management is per­
formed by a reaper thread, which is called when the total 
number of pages present in caches of all the files exceeds a 
threshold or when the system is low on free memory. The 
reaper thread maintains a list of all inodes ordered by LRU 
order of file accesses. To approximate the LRU, we use a 2-
chance CLOCK - a file is declared 'cold' after being given 
two scans during which it has the chance to get accessed again. 
The reaper thread is implemented as a kernel-thread. 

Our implementation is SMP-ready - the primary advantage 
of splitting the LRU list by file is the reduction in the 
contention of the LRU zone-lock. The spinlocks used in the 
implementation and their usage is detailed below: 

reaper-lock: The reaper thread protects its list using 
the reaper-lock. The lock is acquired during inode addi­
tions/deletions, and the reaping itself, when the reaper walks 
down the reaper-list and updates it, or evicts pages from the 
inodes on the list. Since the number of inodes which need 
to be scanned during the reaping may be very large, reaping 
may take a large amount of time. The reaper-lock overhead is 
reduced by releasing and reacquiring the lock after scanning 
every inode, so that file open/close operations are not affected 
for a long period of time. The reaper-lock is not heavily 
contended because it is only acquired by the reaper and when 
files are opened/discarded. This is in contrast to the zone lock 
which is acquired for every cache miss. 

inode-Iock: The inode-lock is an important part of existing 
Linux inode synchronization. The inode-lock is acquired to 
prevent concurrent deletes of the inode via the reaper. 

CAR-lock: The cache manager (CAR in our case) needs to 
protect its page index against concurrent cache-misses on the 
same file. We must emphasize that the lock does not destroy 
the lockless property of the page cache implementation. The 
lock is only acquired under two conditions: 

1) Page additions (which corresponds to cache misses). On 
a cache-miss, the radix-tree lock has to be taken anyway. 
This is required because the reaper can also request an 
eviction concurrently on the same file. 

2) Page evictions. If the eviction has been forced by the 
reaper thread. Since CAR uses CLOCKS, there is no 
lock acquired for a cache hit. 

Improved scalability by reducing lock contention for the 
page eviction process was an important design goal for the 
per-file cache, and the primary advantage of the partitioning 
is the reduction in the lock contention for the LRU list lock. 
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V. RESULTS 

The per-VM page cache is a general purpose page cache and 
can be used by VMs and any other user-space process. Due to 
the double caching phenomenon [26] which occurs with VMs, 
we use user-space processes doing file-IO to mimic VMs. 

To test the effectiveness of our cache, we run multiple I/O 
intensive workloads. The workloads are described in Table 
II. All I/O workloads are generated by using fio (flexible I/O 
tester) [1], and the working set size of each workload is atleast 
two times larger than the total memory available. 

Description 
Mix of random and sequential read workloads 
Kemel compile(Linux 3.0) with 3 threads 

TABLE II 
WORKLOAD DESCRIP TION. 

A. Cache utilization 

400r---��-------. 
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1! 150 u 
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Fig. 5. Average page cache sizes. Per-VM caching results in a large reduction 
in cache size required. The per-file cache shows an order of magnitude 
reduction in cache size for this workload, illustrating the effectiveness of 
the utility based cache partitioning. 

Figure 5 compares the average size of the page cache for 
the random-sequential and kernel-compile workloads (Table 
II). With the per-VM cache, we use only 40 MB of cache, 
while the default uses almost all the memory available and 
occupies 400 ME. This is an order of magnitude difference in 
the cache sizes. This reduction in cache footprint is due to both 
a different eviction algorithm (ARC vs LRU-2), as well as an 
effective demonstration of the utility-based cache partitioning. 

Case 
Default 

Per-VM cache 

TABLE III 
SYSTEM-WIDE PAGE CACHE HIT RATIOS FOR THE RAND-SEQ WORKLOAD 

MIX. WE SEE A 15% IMPROVEMENT. 

The actual I/O performance is shown in Figure 6. The 
I/O performance in this case is not perturbed much. This 
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Fig. 6. Application performance improvement with per-YM-cache compared 
to default Linux page cache. 

increase in cache effectiveness (we are able to use a much 
smaller cache for the same performance) is primarily because 
of the utility based cache sizing. In both the cases - Sequential 
and Random workloads, the marginal utility is very low. We 
identify the sequential workload on the basis of the high read­
ahead-success to cache-hit ratio, and thus penalize that file 
when it asks for more memory. For the random-read case, 
the working set is larger than the total memory, thus the hit­
rate is again quite low. Since margin utility is hit-rate based, 
and since utility guides the allocation, the file having random 
accesses is also prevented from growing at a very fast rate. The 
systemwide cache hit-ratios for the same workload(random­
sequential) are presented in Table III. The overall hit-ratios 
increase by about 15%. Thus, the per-file-cache is able to 
provide an increase in hit-ratios with a lOx smaller cache 
occupancy. 

Small-file performance is measured by performing the 
kernel-compile workload. Due to a large number of open files, 
it is a good test of the worst-case behaviour of the partitioning 
scheme. Figure 6 shows an improvement of 10% in compile 
times of compiling the Linux kernel with the per-VM-cache. 
We also see a decrease of 20% in the cache size required 
(Figure 5). 

B. Impact on system peiformance 
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1.4 

"0 1.2 
� 1.0 
� 0.8 
� 0.6 
V1 0.4 
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0.0 

+ 
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Fig. 7. Load average during the random-sequential workload. The load is 
20% less with the per-YM-cache. 

Since several key components of the memory-management 
subsystem have been substantially modified, the performance 
of our unoptimized implementation was expected to be infe­
rior. However, as Figure 7 shows, the load averages with the 
per-file cache are lower. We hypothesize that this is because 
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of not maintaining and scanning a global LRU list of pages. 
The CPU utilization of the reaper thread was too close to 0% 
to measure accurately. System-wide profiling has shown that 
the CAR shadow-list linear search function(which is called 
on every cache miss) is the most expensive component of 
the entire setup. Replacing the linked-list by a suitable data 
structure to reduce search cost is part of future work. 

VI. RELATED WORK 

Our work builds on a large volume of work in the areas of 
utility-based cache partitioning and page cache design. 

Work by Pei Cao et al. [8]-[10], describes techniques for 
application controlled caching -- wherein applications can 
control the contents of the page cache explicitly by specifying 
which blocks to evict in case the cache overflows. The LRU­
SP [10] algorithm which they have devised allows applications 
to over-rule the kernel's eviction decision. In contrast to our 
work, the kernel still maintains a unified LRU list, and thus 
there is no explicit control on the size of each file's cache. 
Early work in as disk-caches by [12] models the hit­
ratios in a cache hierarchy when each cache in the hierarchy 
implements a different demand-paging algorithm (such as 
LRU,FIFO,RANDOM). Several optimizations for OS-level 
disk-caches have been proposed and prototyped. The Karma­
cache system [32] use marginal gains to guide placement 
of data in a multi-level cache hierarchy -- address ranges 
with a higher marginal gain are placed higher(closer to the 
application). It implements various heuristics for cache alloca­
tion, file-access pattern detection, and replacement. Disk cache 
partitioning is also explored in [30]. The RACE system [34] 
performs looping reference detection and partitions the cache 
for sequential, random and looping files. Similarly, DEAR [11] 
presents an implementation study of caching using adaptive 
block replacement based on the access patterns. 

An implementation of a policy controllable buffer-cache in 
Linux is presented in [3]. Policy controllable caches are a 
natural fit for micro-kernel architectures, where the policy is 
implemented by servers which need not run in the kernel­
mode. Hence, the cache-manager can be abstracted away into 
a separate server, and it interacts both with the buffer-cache 
server itself as well as other userspace servers to determine 
and control the policy. An example of such a scheme has been 
shown for the Mach [18] and HURD [31] micro-kernels. 

Cache partitioning is a very widely studied problem in 
CPU architectural data caches (L2) which are shared among 
multiple threads. Work by [4], [20] details several cache 
partitioning schemes, where the algorithms decide on which 
application threads get how many cache ways(lines). The goal 
is to minimize the number of cache-misses. The key insight of 
the cpu cache partitioning research is that different applications 
have vastly different utilities. That is, the miss-ratio vs. cache­
size (Miss-ratio Curve) of each application is different, and it 
is beneficial to allocate cache space by choosing a size for 
each application which minimizes the miss-rate derivative. 

Singleton [26] implements a black-box exclusive caching 
solution for KVM environments by reducing the host page 
cache size. Page cache management for virtual environments 
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is also covered in [27], however it requires changes to the 
guest OS. Ren et.al. , [25] present a new buffer cache design 
for KVM hosts. Their 'Least Popularly Used' algorithm tracks 
disk blocks by recency of access and their contents. Duplicate 
blocks are detected by checksums and eliminated from the 
cache. Several approaches to effectively use a multi-tiered 
cache hierarchies exist(such as Multi-Queue [33]). 

Performance isolation can also be provided by using iso­
lation features of operating systems. Several solutions exist 
to provide complete isolation to process-groups using OS­
level virtualization - Jails [16] in FreeBSD, Zones [23] in 
Solaris, and control-groups (cgroups) in Linux [2]. Our per­
VM cache can trivially provide page cache virtualization to 
process-groups. The IIO-Ianes project [7] aims to provide end­
to-end 110 isolation in virtualized environments by completely 
partitioning the 110 stack. 

VII. CONCLUSION 

With increasing memory sizes, it is imperative to have fine 
grained control of the page cache. The per-VM page cache 
is an attempt to design and implement a general-purpose 
high-performance page cache solution which is designed to 
be scalable. Some of the limitations of the Linux's virtual 
memory subsystem, such as a single LRU list, non-scan 
resistant eviction algorithm, lack of support to specify page 
cache occupancy have been addressed by our design. By  
partitioning by  using miss-ratio based utility function, we have 
shown that it is possible to increase cache hit ratios while 
decreasing the memory required by upto lOx. Among several 
other features, the per-VM page cache allows each VM to have 
different cache sizes and replacement algorithms. The per­
VM page cache improves performance isolation among VMs, 
increases VM disk 110 performance, and reduces hypervisor 
page cache size which in turn allows cloud providers to run 
more VMs on their physical machines. 
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