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Abstract For the remote replication metrics mentioned above,
synchronous replication would therefore appear to be the
This paper argues that the network latency due to synchronddeal replication mechanism on both counts. First, from
replication is no longer tolerable in scenarios where businessasrecovery-point-objective, for synchronous replication, the
are required by regulation to separate their secondary sites frolacal and remote storage systems are in lock step and there-
the primary by hundreds of miles. We propose a semantic-awfgze data committed to disk is guaranteed to be available
remote replication system to meet the contrasting needs of both gtsthe remote system. Similarly, from a recovery-time-
tem efficiency and safe remote replication with tight recovery-poiabjective, since the local and remote systems are in sync, no
and recovery-time objectives. Using experiments conducted otirae consuming procedures are required to bring the remote
commercial replication system and on a Linux file system we sheystem to a consistent state in the event of a local failure.
that (i) unlike synchronous replication, asynchronous replicationis For these reasons, synchronous replication is normally
relatively insensitive to network latency, and (ii) applications suattcommended for applications, such as financial databases,
as databases already intelligently deal with the weak persistensyiere consistency between local and remote storage sys-
semantics offered by modern file systems. Our proposed systems is a high priority. However, these desirable proper-
attempts to use asynchronous replication whenever possible digs come at a price. First, because every data block needs
uses application/file-system “signals” to maintain synchrony bée be replicated remotely, synchronous replication systems
tween the primary and secondary sites. We present a high-legah not benefit from any local write coalescing of data if
design of our system and discuss several potential challenges tiiee same data blocks are written repeatedly [6]. Second,

need to be addressed in such a system. because data have to be copied to the remote location be-
fore the write operation returns, synchronous replication
1 Introduction has a direct performance impact on the local system, since

] both lower throughput and increased latency of the path be-

In recent years there has been increased awarenesgy@en the primary and the remote systems are reflected in
the need for business continuity in the face of disasters [fe time it takes for the local disk write to complete. This
of business data in such circumstances. The need for dgit throughput to accommodate the peak, bursty load.
availability is typically addressed by replicating business gecause the local and remote systems are allowed to di-
data on a local/primary storage system, to some remote\gige asynchronous replication always involves some data
cation from where it can be accessed in case of a disastefyss in the event of a failure of the primary system. On

From a business/usability point of view, such remoi@e other hand, since write operations can be batched and
replication is driven by two metrics [3]. Firstis thecovery- pinelined, an asynchronous replication system can more
point-objectivewhich is the consistent data point to whictymoothly and fully utilize the available network capacity
dgta can bg restqreq after a dlsaster. Second iBwery- petween local and remote sites, regardless of the latency be-
time-objectivewhich is the time it takes to recover 0 thafyeen sites. As such, in terms of the rate of data transfer,

consistent data point after a disaster. o asynchronous replication systems move data in a much more
Remote replication can be broadly classified into the fQkfficient manner than synchronous replication systems.
lowing two categories: The performance penalty due to network latency in syn-

« Synchronous replication: every data block written t0%{1ronous replication is usually tolerable when the secondary

local storage system is replicated to the remote locatigfi€ 'S Separated from the primary by only a few miles or
before the local write operation returns. tens of miles. However, to ensure that large disasters do

not have catastrophic business consequences, many critical

e Asynchronous replication: in this case the local arolisinesses today are required by regulations to maintain a
remote storage systems are allowed to diverge. Téecondary site that is separated from the primary by a few
amount of divergence between the local and remdtendred miles. The increased network latency due to this

systems is typically bounded by either a certain amouarger geographic separation can have a drastic performance
of data, or by a certain amount of time. (latency) impact on applications, and it is no longer clear



whether the higher penalty of synchronous replication is taem, which in turn deduce the relative importance of data
erable even for stringent business continuity needs. The goates from application behavior. Understanding the inter-
of our work then is to investigate whether a replication syaction between application, file system and storage system
tem can be developed that (i) embodies the desirable prapd remote replication is therefore crucial to our approach.
erties of both synchronous and asynchronous approachessection 3, we consider the interactions of these different
while removing (or at least mitigating) the undesirable progomponents in detail. Finally, in Section 4 we outline the
erties of each and (ii) is particularly suitable for replicatioassence of our approach and consider some of the potential
over large distances. problem areas that need to be addressed in a detailed design.
We observe that most current replication mechanisms
primarily operate at the disk block level. That means that
the replication process is completely oblivious to the app® Related work

cation and indeed to the file system operating on it. This is ganeca [4] uses write records combined with the notion

attractive for the replication mechanism; “all” it has 10 dg¢ parriers in order to coalesce writes and reduce network

is to faithfully replicate each block of data that is handed mroughput. The protocol records each write into the pri-
it. This means that such replication works with any apphcq:hary log, while periodically inserting send barriers into

tion, any file system and any operating system. The dowp- Any ‘hiocks written after the last send barrier can be

side though of such a simple system is that every block Qfeyritten, eliminating the need for their retransmission.
data is treated with the same importance, regardless of te-ordering is ensured by receive barriers, which guar-

importance and/or urgency applied to it by the applicatiQfyee that any blocks written between the old block and the
and/or file system. end of the log will be considered one atomic unit, and will be
The key insight of our approach is that, from an aRgritten to disk as such. The Ursa Minor system argues that
plication/file system perspective, all writes avet treated ng single fault model is optimal for all applications and pro-
equally. For performance reasons modern file systems tyjgissed supporting data-type specific selections of fault mod-
cally do not commit each write request to disk [7]. Rathegjs and encoding schemes [1].
writes normally go into a write buffer in memory where it The Veritas Volume Replicator uses a log and employs
can spend a significant amount of time (15-30 seconds @gnsactions to perform asynchronous replication. It first
Unix-like file systems and even longer on others) befofgys writes into a Storage Replicator Log (SRL), then writes
being written out to disk. The consistency/protection Sgye data to the primary volume, and finally transmits it to
mantics offered by such a file system are clearly undesie secondary volume. A write is reported as complete to
able for many applications (e.g., databases) where there {§dfile system as soon as it is logged into the SRL, but it is
need to store data persistently to deal with crashes. ApRjily marked as complete in the SRL itself once an acknowl-
cations deal with this by explicitly forcing data to disk whedgment has been received that the data has been written
needed. For example this can be done by opening a filgdnthe secondary volume [8]. Hence the system guarantees
synchronous mode (not to be confused with synchronogigonsistent state, since the log is always aware of which
replication), or by indicating to the file system through sysgrites have been replicated successfully. In contrast, when
tem calls (e.g., fsync/fflush) that data should written to diskperating in synchronous mode, the Veritas Volume Repli-
The question addressed in this work is whether the irsator waits until it has received an acknowledgment that the
portance that the application or file system attach to a wriata has been received (although not yet written to disk) at
(indicated by the “signals” described above), can be usedtt@ secondary before reporting the write as complete to the
inform the replication system regarding the importance fife system. In this case extra reliability is earned at the cost
a write and whether it should be replicated synchronousiy speed, since the file system must wait for data to propa-
or not. We call thissemantic-aware remote replication gate over the network and acknowledged each time a write
In particular, our approach attempts to make use of asysperformed.
chronous replication, unless the application/file system “sig- Network Appliance SnapMirror uses a technique known
nals” the need for synchronous semantics. In the latter cage,snapshotting to keep the secondary volume up to date.
the replication of the data is performed with synchronoussing the WAFL filesystem, which supports snapshot op-
semantics. Although one can envisage applications be@tions, the system takes an initial snapshot—essentially a
modified to specifically make use of this system, our initigkad-only copy—of the primary volume and uses it to ini-
work indicates that this does not appear to be necessaryatize the secondary volume. After some time elapses or a
we expect the file system to be able to infer the applicati@étireshold is reached, a new snapshot is taken and the differ-
semantics through existing mechanisms. ences between the previous and the new snapshot are trans-
The outline of the remainder of the paper is as followgerred to the secondary volume [2].
In Section 2, we put our work into perspective by consid- There exist numerous other commercial products that
ering related work. Our approach involves the replicatiquerform replication, such as IBM Extended Remote Copy,
system providing a semantic aware interface to the file sy$P Continuous Access XP, and EMC RepliStor. EMC prod-



mercial storage system with remote replication capabilities.
For this case study, the storage arrays were interconnected
over a testbed consisting of a Gigabit Ethernet IP network
using storage switches implementing the Fibre Channel over

Application Applicatior

File System e ystem IP (FCIP) [5] protocol. Our IP testbed was equipped with
Volure Menager/ ‘ Volure Nenager/ a commercial network emulator which allowed us to intro-
Featen @ e duce various network anomalies (in particular delay) in a
controlled fashion for our experiments.

To understand the difficulties of having strict syn-
chronous replication, especially when the secondary (repli-

. o cation) site is a long distance away from the primary site,
Figure 1. Remote Replication it is useful to examine the fundamental limitations imposed

o g by the system and protocols. For this purpose, we examined
the performance of our test system using both synchronous
and asynchronous replication while varying the delay intro-
duced by the network emulator in our testbed.

We first consider the case where the storage systems were
configured to perform synchronous replication. Figure 2
shows the instantaneous network throughput (averaged over
1 second intervals) achieved by the system for three differ-
ent delay settings. The plots show the activity for the initial
remote replication phase where the local and remote disks

600 -

500 -

400 -

Rate (Mbps)

300 -

200 -

100 [

PY WRTRVINVRTVIV NIV | JOP RO TVOR FOTOT IO
2000 2200 2400 2600 2800 3000 3200 340¢ 3600 3800 4000

) Tme ) are being synchronized. (l.e., the amount of data transfered
Figure 2: Synchronous replication: FCIP throughput for dif each of the three runs are the same.) The impact of even
ferent delay values this modest increase in delay, when performing the replica-

tion synchronously, is evident from the significant decrease

ucts, in particular, are based on the Symmetrix Remote Dﬁﬁh - :
i : : o e throughput achieved. Further, even in the case where
Facility (SRDF), a family of solutions which include syn- ghp

o no delay was introduced, the throughput achieved is signif-
chronous and asynchronous replication protocols. An

&antly lower than the 1 Gbps available in the testbed net-
cellent description of these and others, as well as a deta('?l ky P

taxonomy of the different approaches for replication can be
found in [4].

The second example we show is where the systems were
configured to perform a type of asynchronous replication,
. namely, the replication of "point-in-time” copies. The re-
3 Remote Replication mote replication application uses the functionality in the
In this section we consider the components involved wigiorage array to perform coherent, recurrent, background
remote replication, end-to-end. In Figure 1, we show c®py of data by maintaining several copies of the data that
generic remote replication system. At the primary site, dagpresent a consistent snapshot of the data volume. An old
written by an application passes through the file system yersion of the data on the remote system is not deleted be-
fore it is handed over to a volume manager to write the ddgre a new copy has been replicated to the remote site in its
to disk. In a remote replication system, the volume managttirety. Once all the volumes are synchronized for the first
will also be responsible for replicating the data via the widéme, only incremental transfers are typically performed so
area network to a remote system, where a reciprocal voluthat only data that has changed since the previous transfer is
manager will take part in the remote replication protocol arpied across the network link.
write the data to disk at the remote site. We investigate theWhen the distances between the local and remote sites
interaction between these different components by first care several hundred to a few thousand miles, the latency
sidering the remote replication of a commercial replicatidmplies that a large amount of data can be in flight at any
system in Section 3.1. Then in Section 3.2 we look in dastant between the source and destination. Because the lo-
tail at the functioning of the default Linux ext3 file systental and remote copies are allowed to diverge, asynchronous
and in particular the interaction of a database with this fiteplication can effectively fill this pipeline with data before

system. an acknowledgment is needed from the remote end and is
therefore much less sensitive to the increase in delay.
3.1 Remote Replication on IP networks Figure 3 shows the throughput achievable for asyn-

chronous replication for different values of delay in our
In this section we present results from a case study testbed. Notice that the achieved throughput is quite close to
volving remote replication over IP networks using a comhe 1 Gbps link capacity in all cases, with appropriate tuning



TS et e st 08 3. Metadata writeswhich write the file metadata to disk.
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Like most operating systems, Linux employs a kernel-

Switch

[ ] level file system buffer cache to optimize performance.
) i e | il iy ks The OS employs two daemons—kjournald and
pdflush —that flush dirty blocks to the disk in the back-
: no o | |00 ground. kjournald is responsible for writing journal

blocks to disk, whilepdflush is responsible for flush-

ing dirty data and metadata buffer blocks to disk. To en-

sure atomicity, all writes to the journal are implemented as

transactions; kjournald executes all scheduled transactions
periodically— the default period is 5 seconds.

Figure 3: Asynchronous replication: FCIP throughput with |n the first experiment, we opened a file in the syn-

different delay values and FCIP switch parameters settingdronous mode and traced the sequence of kernel events

of TCP and Fibre Channel switch and protocol parametefdggered by awrite system call. We then repeated the exper-
This remains true, even if the round trip delay is increasdg€nt by opening the file in asynchronous mode. Finally, we
to 80 ms, which is equivalent to a round trip delay acro@9ened the file in asynchronous mode and observed kernel
the continental US. Thus, asynchronous replication can ghavior due to a write followed by an fsync (which flushes

made relatively insensitive to distance, which is clearly vel{)© data to disk). Figure 4 illustrates the observed sequence
attractive. of events in these three experiments. We discuss the salient

features of these sequences below:

3.2 Behavior of Applications on a File System ) ) )
Synchronous write:As expected, writes in synchronous

To better understand how applications interact with tffBodes are blocking — the write system call returns only
underlying file system and the disk, we conducted two sé¢§en all data and the journal metadata have been written
of experiments. We ran a synthetic application that issulydisk. In p_art|cular, the write call causes the file system to
writes to a journalled Linux file system and observed hog¢edule a journal transaction. The file system then writes
the file system handled these writes at the kernel level. Neki€ data dirtied by the write call to disk. The journal transac-

we ran the Postgresql database on the journalled file s§

g’n is executed next by kjournald, which flushes the journal
tem and observed how it issued writes to the file systeg"l\diSk (thereby logging the metadata to the disk). kjournald
upon each database transaction. We used Linsystem-

then writes out a commit block indicating the end of the
tap kernel-profiling tool to obtain a detailed trace of kernd

purnal transaction. At this point, the write call, which was
events, including application-issued system call, executiBlpcked, retumns back to the application, signaling the end
of kernel daemons, and writes to the disk driver.

of the write. At some later instant, pdflush writes out the
All experiments were carried out using Linux 2 g.odirty meta-data to disk (since the journal already includes

with ext3 as the underlying filesystem and using podhis information, there is no need to write out the metadata
gresql 7.4.13. We experimented with various file systefychronously; asynchronous metadata writes improve per-

journalling options but only report the results on the defadf'mance).
option (journal = ordered). Note thamo replication was asynchronous writeAs expected, asynchronous writes are

performed in this setup. non-blocking. An asynchronous write only schedules a jour-
nal transaction and then returns back to the application. At
3.2.1 Filesystem Write Handling a later instant that is determined by the kjournald commit

interval, kjournald actually executes this transactions and

. o ' i
Like any flavor of Unix, Linux allows each file to be Opene&;&rites out the dirty data block as well as the journal block

either in the synchronous or asynchronous mode by specify-

ing the appropriat®©_SYNCor O ASYNCflag in theopen ngQﬁ ;:to arrli:tletzrbtlicr)r?s The file meta data is written out by

system call. This determines how writes will be handled ku

the filesystem. Asynchronous write followed by fsyndn this case, the
Any application-level write can trigger three types ofirite system call returns immediately after scheduling a
writes at the kernel level: journal transaction. The fsync, however, is a blocking call

that causes all dirty journal and data blocks to be flushed
to disk. Linux supports three flavors sfync : fsync ,
Which flushes all dirty data and metadata of a file to disk,
fdatasync , which flushes all dirty data but not metadata,

2. Data writes which write the file data blocks to disk. andsync which flushes all dirty data systemwide.

1. Journal writes which may include logging of meta-
data, data, or both, depending on the journal configu
tion. The default is to only log metadata.
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Figure 4: Event sequence for a synchronous write, an asynchronous write, and asynchronous write followed by a fsync.

Application
database

File
system

around a database transaction, to insert a few rows into a

ﬁn\’» table. Figure 5 depicts the sequence of events that are trig-
© gered by the SQL query. We observe that the query causes
%ng»“pda‘ew’“”m the update to be logged to the WAL buffers in user space.
When the transaction commits, a write system call is issued
o to the file system, followed by an fsync which flushes dirty
“iz‘“ms/ WAL blocks out to disk. The transaction returns only af-
] [ . ter the ﬂgsh completes. Thg data written by the SQIT query
M‘anﬂ,ﬁg are held in shared memory in user-space and are written out
% asynchronously at a later time (either when the buffer fills up
wz:f;e%‘ _or_if checkpoint is called). Wheneyer a databaleckpoint
() is invoked by the user (or automatically by the system every
C“%o\fm:og> so often), a write is issued to the commit log file, and all
e | data in the shared memory buffers are written out, followed
& by async to flush these writes to disk. Once the sync com-

Figure 5: Event sequence fora SQL guery in Postgresqmetes, a Checkpoint record is written out the WAL, followed

3.2.2 Behavior of a Database

by a write to the checkpoint log file; both writes are flushed
usingfsync . Thus, the database does not violate correct-
ness (i.e., maintains ACID properties) even thoaljlvrites

A typical database can be configured to run on raw disk p&fe in asynchronous moddhis is ensured by intelligently

titions or over a file system. In the former case, the databasguing sync or fsync calls to flush the OS-buffered writes
is responsible for buffer and storage management—it impRut to disk—the use of asynchronous writes improves per-
ments its own buffer cache in application space and writd¥mance without violating safety.
out dirty data when needed to the raw partition. The ad-
vantage of this approach is that it prevents double bufferiag
within the operating system. However, for reasons of con-
venience, databases also support standard file systems. Tim the previous section we have shown that applications
understand how this is done, we examirRabtgresg—an that care about the persistency of written data, intelligently
open-source object-relational database. When configuredise existing file system mechanisms to ensure that data is
run over standard file system, Postgresqgl maintains sevavatten to disk when needed. We have also shown that asyn-
files: (1) a write-ahead log (WAL) file, that logs changes tohronous replication is likely to be more efficient than syn-
data files (database tables), (2) data files, that hold tables ahrbnous replication in terms of moving data from a primary
indices, (3) a commit log file, that contains the commit stée a backup site.
tus of transactions, and (4) a checkpoint log file, that holds Combining these observations, the essence of our ap-
the location of recent checkpoints. proach to remote replication is to perform replication asyn-
By default, Postgresql opens all files @synchronous chronously by default, and to automatically switch to syn-
mode for writing, although it is also possible to configure thehronous replication semantics only when prompted to do
database to use synchronous writes. To understand howgbeby the application. Note that switching between asyn-
database operates on files, we ran an SQL query, wrapphtbnous and synchronous replication in our system is not

Semantic Aware Remote Replication



on a system wide basis, but on-demand based on a per apigtie advantages obtained through write coalescing and ju-
cation/file basis. With synchronous semantics the relevalitious use of network resources will need to be carefully
data will be guaranteed to have been replicated to the censidered.

mote system when the system call returns. Specifically our

system operates as follows: 5 Conclusion

For files opened in synchronous mode (i.e., u§n§YNQG, We have proposed a Semantic Aware Remote Replica-
our system performs synchronous remote replication.  tion system to meet the contrasting needs of both system
usife iciency and safe remote replication with tight recovery-
int and recovery-time objectives. Our system exploits
e fact that applications already intelligently deal with the
weak persistency semantics offered by modern file systems.
e fsync : All dirty data and meta data of the opened filén this paper we have motivated our approach and presented
that reside in the filesystem or the volume manager aéigh level design of how such a system would be realized.
replicated to the remote site. Our future work is in evaluating the potential benefit of our
. ) . approach for various real-world workloads. Further, while
e fdatasync : Dirty data associated with the openeg\,e mentioned some of the potential pitfalls, the detailed sys-

file in either the file system or the volume manager {g, design and implementation is work in progress.
replicated to the remote site.

For files opened in asynchronous mode (i.e.,
O.ASYNQ, our system performs asynchronous replicatioﬂi
unless the application issues one of the following calls:

e sync : All dirty data in the file system or the volumeReferences
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