
Greening Web Servers: A Case for Ultra Low-power
Web Servers

Benoy Varghese∗†, Niklas Carlsson‡, Guillaume Jourjon∗, Anirban Mahanti∗ and Prashant Shenoy§
∗NICTA, Australian Technology Park, Eveleigh, NSW Australia. Email: firstname.lastname@nicta.com.au

†University of New South Wales, Sydney, NSW Australia
‡Linkoping University, Sweden, Email: Niklas.Carlsson@liu.se

§University of Massachusetts, Amherst, MA, USA; Email: shenoy@cs.umass.edu

Abstract—This paper studies the feasibility and benefits of
greening Web servers by using ultra-low-power micro-computing
boards to serve Web content. Our study focuses on the tradeoff
between power and performance in such systems. Our premise
is that low-power computing platforms can provide adequate
performance for low-volume Websites run by small businesses
or groups, while delivering a significantly higher request per
Watt. We use the popular Raspberry Pi platform as an example
low-power computing platform and experimentally evaluate our
hypothesis for static and dynamic Web content served using
this platform. Our result show that this platform can provide
comparable response times to more capable server-class machines
for rates up to 200 requests per second (rps); however, the
scalability of the system is reduced to 20 rps for serving more
compute-intensive dynamic content. Next, we study the feasibility
of using clusters of low-power systems to serve requests for
larger Websites. We find that, by utilising low-power multi-server
clusters, we can achieve 17x to 23x more requests per Watt
than typical tower server systems. Using simulations driven by
parameters obtained from our real-world experiments, we also
study dynamic multi-server policies that consider the tradeoff
between power savings and overhead cost of turning servers on
and off.

I. INTRODUCTION

In todays cloud-dominated age, we still find that dedicated
Web servers are widely used, especially in many small-scale to
medium-scale enterprises [1], [2]. Power consumption of such
dedicated Web servers can be high. For instance, a typical
tower server has a baseline power consumption of 325 W
[3], which amounts to approximately 50-80% of its power
consumption at peak load. However, over 90% of the time,
these servers are underutilised [4].

This paper explores the feasibility of using ultra low-power
systems to replace these high-power Web servers at small-to-
medium scale enterprises, motivated by two observations. First,
recent advancements in processor designs potentially enable
new ARM-based ultra-low-power systems to replace x86 based
systems in numerous applications in the near future. Second,
many small-to-medium scale organisations (e.g., universities)
do not have response time requirements that are as critical or
strict as that of commercial online services.

In evaluating our hypothesis, we make three contributions.
First, we experimentally evaluate the performance of a lighttpd

This work was supported by funding from NICTA and the Australian
Research Council through the ICT Centre of Excellence program, CENIIT
at Linköping University, and NSF Grants CNS-1117221 and CNS-1422245.

978-1-4799-6177-1/14/$31.00 c©2014 IEEE

Web server [5] implemented on an ARM-based Raspberry
Pi and compare it to that on a standard x86 server. We
primarily focus on the tradeoff between energy consumption
and response times of these servers. Our results show that low-
power computing systems provide comparable response times
for serving static Web content and can sustain request rates
of up to 200 requests per second (rps), which is more than
adequate for small Websites. We find that the scalability of
the system is reduced to 20 rps when serving more compute-
intensive dynamic Web content, which makes such systems
less desirable for such settings. In both scenarios, this perfor-
mance is achieved at a fraction of the energy consumed by a
standard server.

Second, we show that a Raspberry Pi cluster can serve, on
average, 17x to 23x more requests per Watt than a typical tower
server at high arrival rates. Third, motivated by these results,
we consider the feasibility of using clusters of low-power
servers to host more popular Websites and consider dynamic
multi-server configurations in which the number of actively
serving servers is adjusted based on the current workload such
as to achieve a minimum desired response time. Using system
parameters determined based on our experiments on real
hardware, our simulations of the system evaluate the clustered
servers under three basic policy classes, each designed to allow
a group of servers to save energy when not in use.

The simulations show that our conclusions hold true across
all policy classes. Overall, systems using multiple low-power
servers consistently use much less energy, while achieving
the same desired performance level as those using multi-
ple standard servers. We also find that a policy that has a
minimum number of always-on servers typically achieves a
more desirable tradeoff between the number of on/off server
transitions and energy usage, than a policy in which servers
defer turning off after their queues empty. These policies are
therefore preferable in modern systems, where there typically
is a wear-and-tear cost associated with turning servers on-and-
off. Overall, our study shows that low-power systems are a
greener alternative to standard servers.

This paper is organised as follows. Section II discusses
related work. The experimental methodology is outlined in
Section III. Sections IV shows the results of the experimental
evaluation and analysis. Section V presents both an average
delay-based multi-server analysis and a dynamic multi-server
analysis using fine grained policies for when to turn servers
on-and-off such as to further save energy. Section VI presents
concluding remarks, including future work directions.

II. RELATED WORK

The design and performance evaluation of Web servers
has attracted much attention from in the last decade. The
primary focus was to achieve highest possible performance
[6], [7]. Power efficiency was generally not considered. Re-
cently, Hashemian et al. [8] studied the effect of scaling on
performance of multi-core Web servers for both static and
dynamic content. Although the impact on power consumption
was not considered, their findings show that the performance
of dynamic workloads scale better with number of cores than
for static workloads, suggesting that multi-core servers may be
better suited for serving dynamic than static workloads.

The performance of typical Web servers that involve
transaction processing can be analysed using various TPC
benchmarks. TPC-W was one of the earliest benchmarks used
for e-commerce Websites [9] and was superseded by TPC-
H. TPC-Energy specifies the rules and methodologies to be
followed for measuring and reporting energy metrics in TPC
Benchmarks. Another standard benchmarking suite used for
server benchmarking was the SPECWeb [10]. For benchmark-
ing the power and performance of server class computers,
SPECPowerssj 2008 is used [11]. More recently, Bai et al.
[12] benchmarked wireless Web servers for applications where
the lifetime of clients are short-lived. They observed that
throughput can be drastically improved by using persistent
connections. They also demonstrate numerous ways in which
bottlenecks are manifested in a wireless Web server.

Amza et al. [13] modelled and benchmarked Websites with
various types of dynamic content. Their evaluation identified
that bottlenecks depend on the type of content delivered and
highlighted the importance of characterising the performance
of a Web server depending on its application.

The use of clusters of low-power systems for computing
has comparatively received less attention. Andersen et al. [14]
developed a key-value-based storage mechanism to reduce
power consumption in processing large amounts of data using
a cluster of low-power systems. Although their primary focus
was the design of the storage system rather than benchmarking
the performance of the low-power cluster for data intensive
computing, they showed that high speed data processing is
possible using clusters of low-power devices.

More recently, Sehgal et al. [15] studies how file system
design affects server performance and energy efficiency. They
compared the performance of various file systems on two
different server class machines under various workloads. They
concluded that no single file system can be used universally
to achieve energy efficiency, but if the file system is matched
to the workload, significant power savings could be achieved.

Mathew et al. [16] showed that energy reductions can
be maximised while maintaining end user SLA performance
by using a load balancer to reduce the number of server
on/off transitions in a multi-server architecture like CDNs.
They argued that minimising server transitions is an important
parameter so as to improve the reliability of server hardware.
In our paper, we show that we are able to achieve low
server transitions while achieving significant power reductions
without violating SLA thresholds.

Fig. 1. Raspberry Pi micro-computing board.

III. EXPERIMENTAL METHODOLOGY

A. System description

Our Web server was implemented on an ARM-based Rasp-
berry Pi, a credit card sized micro-computing board primarily
developed for schools to teach programming. The network
interface is a 10/100 Ethernet card. It consumes less than 3.5W
of power under peak load. We choose Raspberry Pi because
of its power consumption, low cost, and availability.

In our experiments we use a high speed, 8 GB class 10
(30 MB/s), SD card for storage. This ensures that the storage
device is not the system bottleneck. If additional space is
required, we could use a larger SD card, an USB powered
high speed SSDs, or spinning drives. Even though addition
of peripheral devices would increase the total system power
consumption, there are ultra low-power consuming devices
available in the market today that cater for power-efficient
applications [17]. We note that addition of peripherals would
skew the performance analysis because bottlenecks could po-
tentially be created due to the slow speed of USB 2.0 interface.

The Web server implementation is based on lighttpd
v.1.4.31 [5] which has very low resource requirements. Some
of the alternatives for Web server implementation were Apache
and Nginx. The advantage of using lighttpd over Apache is
that the former is an asynchronous server, which handles
processes in a single thread with non-blocking I/O. The latter
is a process-based server, which requires a separate thread
to handle simultaneous connections. In essence, the memory
footprint for lighttpd is much smaller than Apache for large
workloads. We chose to use lighttpd for our experiments, pri-
marily due to its ease of use and its slightly better performance
than Nginx while handling smaller file sizes.

The Raspberry Pi that we use for our experiments is
Model 0002, T ype B, Rev. 1 with 256 MB RAM. We
have a similar implementation on a more recently released
Model 000e, Type B, Rev. 2 with 512MB RAM. Unless
otherwise mentioned, the results are from the experiments
run on Model 0002. The operating system used is ‘wheezy
raspbian’, which is a barebones version of Debian customised
for Raspberry Pi.

The processor speed for Raspberry Pi can be over-clocked
from 700MHz to 1.1GHz in turbo mode. Increasing the clock
speed causes a slight increase in power consumption and
temperature. For all our experiments, the Raspberry Pi was
clocked at its default speed of 700MHz. The Raspberry Pi
also comes with an inbuilt temperature sensor that could be
used for real-time monitoring of processor temperature. This
can be used to estimate whether external cooling is required.
The maximum rated temperature it can handle is 85 ◦C.

TABLE I. FACTORS AND LEVELS FOR EXPERIMENTS

Factors Levels

Arrival Rate, λ (rps) 1,2,4,8,10,20..100,200..500
Content Size, S (Kb) 1, 4, 16, 64, 256
Content Type Static, Dynamic
Server Type Raspberry Pi, Standard

The “standard server” used for our performance compari-
son is a tower server running lighttpd with PHP, powered by
an AMD Phenom II X6 (6 Core) 1100T Processor with 16GB
RAM and a clock speed of 800MHz per core.

For power measurements, we make use of a ‘WattsUp?
.Net’ power meter. It can be used to measure instantaneous
power consumption at a resolution of 100 mW. The measure-
ments are logged at a rate of 1 sample per second.

B. Experiment design

The factors and levels used for the experiments are high-
lighted in Table I. We use httperf [18] to send requests at
varying arrival rates to the Web server to study the impact
of arrival rates on server performance. The requests were
modelled as a Poisson process with arrival rate λ, varied from
1 to 500 requests per second (rps). Each experiment ran for
10 minutes with the first and last minutes removed to avoid
transient effects. Experiments were repeated 20 times. The
results reported are the average of these trials. To minimise
impact of network latency, the server and client were connected
to the same wired network.

The following metrics were observed from the experiments:
(i) average server response times, (ii) CPU utilisation, (iii) av-
erage CPU load, and (iv) power consumption. Unless otherwise
reported, the number of errors in the system was observed to
be either zero or insignificant to warrant further investigation.

The number of file descriptors on the client was increased
to 65,000 (from 1,024) to avoid running out of file descriptors
during experiments with high request rates. We also set the
TCP timeout value to 10 seconds.

To study the impact of content size on performance, we
experiment with contents at different sizes. We used server
logs from a medium scale enterprise to identify the typical size
of content being accesses. Figure 2 shows the distribution of
content sizes being accessed over a day from an enterprise Web
server. We observed that nearly 90% of content accessed is less
than 100Kb. Motivated by the observed file size distribution,
for our experiment design, we used the following content sizes:
1Kb, 4Kb, 16Kb, 64Kb and 256Kb.

For the static content, experiments on the standard server
were conducted with two different settings. One with lighttpd
in its default configuration, and another with multithreading
enabled to utilize all 6 cores of the standard server. We make
use of 2 worker process per core to utilize all cores. Limiting
the number of processes per core help improve utilisation [8].

To evaluate the performance of the server for serving
dynamic content, we use wview, a weather management
system as a dynamic content [19]. Wview is implemented
as a dynamic Website which responds with content generated
dynamically for each request received.

1 10 100 1000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

File Size (KB)

C
D

F

Fig. 2. Distribution of size of content accessed from an enterprise Weblog.

Arrival Rate, λ (rps)
1 2 4 8 16 32 64 128 256 512 1024

 1

 2

 4

 8

 16

 32

 64

128

256

500

S
er

ve
r

R
es

po
ns

e
T

im
es

 (
m

s)

Raspberry Pi
Standard Server without multithreading
Standard Server with mutithreading

Fig. 3. Comparison of impact of request arrival rates on the response times
of Raspberry Pi and a standard server for a single file (16Kb) download.

IV. EXPERIMENTAL RESULTS

A. Impact of request arrival rates

The system’s ability to handle high loads is first evaluated,
using response time measurements under different arrival rates.
Figure 3 shows the comparison of download performance
of a single 16Kb file for the Raspberry Pi server to that
of a standard server configured in its default as well as
multithreaded mode. It can be seen that the performance of
the low-power server is comparable to that of a standard server
for low to medium arrival rates (λ = 1 to 50 rps). Equivalent
performance can be achieved by using multiple low-power
devices and balancing its load using DNS redirection. For
example, for a content size of 16Kb, to achieve a response time
of under 10ms, a Raspberry Pi can handle loads of up to 200
rps while a standard server, in its default configuration without
multithreading enabled, can handle approximately 450 rps. The
performance advantage of the standard server is only 2.3x.
With multithreading enabled, this maximum load went up to
625 rps (3.1x performance advantage). For the standard server,
multi-threading has a modest performance advantage over the
default (multi-threading disabled) configuration. Hence, unless
otherwise mentioned, we have reported results from the default
configuration with multithreading disabled.

To gain further insight into the performance of the low-
power system, we considered system level factors such as
CPU, and memory utilisations. We monitor the system re-
source utilisations for downloading a single 16Kb file with
arrival rates varied between 1 rps to 800 rps. The mean CPU

The variation in response times for arrival rates from 1 to 8 rps is due to
the clock granularity.

1 2 4 8 16 32 64 128 256 512

0
20

40
60

80
10

0

C
P

U
 U

til
iz

at
io

n
/ C

P
U

 L
oa

d
(%

)

Arrival rate, λ (rps)

user
system
idle
interrupts
CPU Load

(a) CPU utilisation and Load of Raspberry Pi server.

Arrival rate, λ (rps)
1 2 4 8 16 32 64 128 256 512

0

50

100

150

200

250

300

M
em

or
y

(M
B

)

total
used
free

(b) Memory utilisation of Raspberry Pi server.

Fig. 4. Impact of arrival rate on system resource utilisations for serving static
content of size 16 Kb.

utilisations and CPU load for serving a static file of size
16Kb is shown in Figure 4a. The total CPU utilisation can
be calculated as the inverse of the idle parameter, or as a sum
of three parameters, system, user, and interrupts. The amount
of CPU utilised by the operating system level processes is
shown by the system parameter, the user parameter shows
the utilisation by user generated processes, and interrupts
shows utilisation due to software interrupts. Notice that CPU
utilisation increases with increase in request arrival rate. This
is because of the higher number of interrupts that need to be
handled by the CPU. Note that CPU load is a measure of the
size of the queue build up at the CPU. At high arrival rates,
the performance of the server is drastically reduced because
the queue at the CPU is always full. Results for memory
utilisation, shown in Figure 4b, depicts only a minor increase
in memory utilisation at high arrival rates. This shows that the
Raspberry Pi is limited by the CPU, rather than the memory,
for serving static content.

B. Impact of (static) content size

We conducted experiments where the content size was
varied from 1Kb to 256Kb. Figures 5a and 5b show the
response times for serving contents of varying file sizes as
seen at the Raspberry Pi and standard server, respectively. It
was observed that larger files cause the response times to go
up at a lower request arrival rate; this performance degradation
is due to large queue buildup at the server side associated with
the service of a large file.

C. Dynamic content

Generally, the performance of Web servers are dependent
on how the dynamic content is being generated and also on
the performance of the database used to store the content. In
most cases, the database is stored remotely. If the database is
very small, then it is hosted in the same machine as the server.

Arrival Rate, λ (rps)
1 2 4 8 16 32 64 128 256 512

 1

 2

 4

 8

 16

 32

 64

128

256

500

S
er

ve
r

R
es

po
ns

e
T

im
es

 (
m

s)

1K
4K
16K
64K
256K

(a) Raspberry Pi server.

Arrival Rate, λ (rps)
1 2 4 8 16 32 64 128 256 512

 1

 2

 4

 8

 16

 32

 64

128

256

500

S
er

ve
r

R
es

po
ns

e
T

im
es

 (
m

s)

1K
4K
16K
64K
256K

(b) Standard server.

Fig. 5. Impact of content size on server response times.

Arrival Rate, λ (rps)

1 2 4 8 16 32 64

1
10

10
0

10
00

10
00

0
10

00
00

S
er

ve
r

R
es

po
ns

e
T

im
es

 (
m

s)
Pi Server model0002
Pi Server model000e

Fig. 6. Impact of request arrival rates on the response times for dynamic
content on Raspberry server.

For our experiments, we ran wview, a weather station
management system which generates weather report archives
based on sensor data from weather stations. We issue requests
to the Website which responds with content generated dynam-
ically for each request. This experiment was performed on two
versions of the Raspberry Pi: Model 0002, and a more recently
released Model 000e. It was observed that the performance
of older version of the Pi was poor, even at 1 rps, but the
newer version was able to perform reasonably well for loads
upto 20 rps as shown in Figure 6. This shows that low-power
servers are capable of handling dynamic content as well, but at
reduced load. Having a higher RAM also help with improving
the performance for serving dynamic content.

D. Power consumption

The baseline power consumption of typical tower servers
are of the order of 80-300 W [3] and would increase by 20-50%
when the server is loaded. The baseline power consumption for
our standard tower server was measured to be 81W.

The baseline power consumption of Raspberry Pi was 1.8W
without any peripherals. Under high load, the power consump-
tion variation was minimal as it increased to a maximum of
2.2W. It was also observed that the power profile for Raspberry

Arrival Rate, λ (rps)

P
ow

er
 C

on
su

m
pt

io
n

(W
)

1 2 4 8 16 32 64 128 256 512

0

20

40

60

80

100

120

140 Dynamic
Static

Fig. 7. Power consumption profile of a standard server for serving static and
dynamic contents.

0 500 1000 1500

0
10

0
20

0
30

0
40

0

Arrival Rate, λ (rps)

0
10

0
20

0
30

0
40

0

0 500 1000 1500

P
ow

er
 C

on
su

m
pt

io
n

(W
)

Pi Server − 5ms
Std Server − 5ms
Pi Server − 10ms
Std Server − 10ms
Pi Server − 50ms
Std Server − 50ms

(a) Comparison of power consumptions.

0 500 1000 1500
Arrival Rate, λ (rps)

 0
.0

1
 0

.1
0

 1
.0

0
 1

0.
00

10
0.

00

R
eq

ue
st

s
pe

r
W

at
t

Pi Server − 5ms
Std Server − 5ms
Pi Server − 10ms
Std Server − 10ms
Pi Server − 50ms
Std Server − 50ms

(b) Comparison of requests served per Watt.

Fig. 8. Power to performance tradeoff comparison between Raspberry Pi and
a standard server when scaling while adhering to the chosen response time
thresholds (5ms, 10ms, 50ms) and serving a 16Kb file.

Pi is relatively independent of content type. In contrast, for
a standard server there is a significant difference in power
consumption depending on content type as well as server load.

A comparison of instantaneous power profiles of a standard
server for serving static and dynamic contents with arrival rates
varying from 1 to 100 requests per second is shown in Figure
7. For static content, the variation of power consumption was
found to be 16.5% with the maximum power consumed at
300 requests per second being 97.5W. The variation is much
more when it comes to dynamic content due to the additional
processing required by the CPU and memory utilisation.

V. MULTI-SERVER ANALYSIS

A. Simple average delay model

We study the power savings that could potentially be
achieved by using multiple low-power devices instead of
using a single (or multiple) high-power server as frontend for
serving static content. Our model assumes that we make use
of multiple low-power Raspberry Pi systems as the frontend
to achieve a desired quality of service. We measure the quality
of service in terms of response time thresholds.

Figure 8a shows the power consumption profile of Rasp-
berry Pi and standard server configurations while downloading
a static 16Kb file for three different response time thresholds:
5ms, 10ms, and 50ms, respectively. To generate this model, we
have used the average power consumption of the Raspberry Pi
at peak load which is 2W. For the standard server, we have
used two threshold values, the baseline power consumption
at 1 rps (81W) and the maximum power consumption at 300
rps (97.5W). Here, we have assumed that multiple low-power
servers can be utilised to achieve the equivalent performance
of that of a standard server. Similarly, to cater for higher
arrival rates, we cascaded multiple standard servers as well.
This cascading can be seen as step changes in Figure 8a. It is
assumed here that load balancing while cascading is achieved
using DNS redirection.

In addition to providing great energy savings for a given
workload, when utilising multiple servers, low-power servers
allow an opportunity for finer grained optimisation of the
number of active servers that are on at each point in time.
This can be valuable when turning servers on/off based on
the expected workload requirements, such as to best serve the
current workload. Such policies have been widely proposed to
leverage the fact that many systems have long periods with
lower server loads, to save energy by switching off unused
server resources. For example, based on our experiments,
a single standard server can serve anywhere between 1 to
400 requests per second (rps), consuming a similar energy
for the full request rate range. On the other hand, by using
multiple low-power servers, we can adjust, with relatively fine
granularity, the number of low-power servers required to serve
each of the request rates in this range. This allows for even
greater energy savings during periods with very low load.

To compare the power efficiencies of the Raspberry Pi and
standard server, we also calculated the number of requests that
could be served per unit of power consumed. Figure 8b shows
that even at high arrival rates, the Raspberry Pi cluster would
outperform and is more energy efficient than a standard server
for static content. At arrival rates of λ > 300 rps, we were able
to serve 17x to 23x more requests per Watt using a Raspberry
Pi than a standard server, at various response time thresholds.

The results show that at higher arrival rates, significant
power savings can be realised by using multiple low-power
devices. For example, at 1000 rps, to achieve a response time
threshold of 5 ms, we need to use three standard servers result-
ing in a power consumption of 275 W. The same performance
can be achieved at a cost of only 14W using seven Raspberry
Pi servers. This is a power reduction of approx. 20x.

B. Dynamic policies

The experiment results and average scaling model showed
that significant power savings could potentially be achieved
by using low-power servers. This encouraged us to compare
the impact of some simple multi-server policies on energy
consumption of low-power servers and compare it to that of
standard servers. This is achieved using simulations whose sys-
tem parameters were determined based on the results obtained
from our experiments using real hardware shown in Section
IV. We define one baseline policy and two multi-server policies
which provide a more fine-grained tradeoff between power and

overhead costs. The overhead cost captures the complexity and
wear-and-tear associated with turning servers ON/OFF, and is
measured here by server transitions metric. A server transition
is either a Turn ON or a Turn OFF event.

1) Baseline policy: In this policy, the servers are turned
ON and OFF without any delay, and an already active server
is loaded with requests only if placing them at these servers
would not violate the SLA response time constraint. Unless
otherwise mentioned, we have used an SLA response time
threshold of 10 ms. Assuming that we can turn servers
ON/OFF instantly, the baseline policy provides a lower bound
for the energy consumption. Here, we would be able to save
maximum amount of energy because a resource (server) is
utilised if and only if it is required, otherwise it is released
(turned OFF). The major drawback of this type of system is
that we would have to turn ON/OFF servers very frequently
to cater to varying loads to achieve our SLA threshold.

2) Always ON policy: This is a more practical policy in
which we keep a minimum of N servers always ON . This
simple policy provides a tradeoff between energy consumption
and number of ON/OFF transitions, as determined by the
number of AlwaysON servers.

3) Delayed turn OFF policy: Similar to the always ON
policy, the delayed turn OFF policy is designed to provide
a good tradeoff between power consumption and number of
server transitions. In this policy, the server, once it is turned
ON, remains in the ON state for an additional time period of δ
after it has become idle. This would help the server to absorb,
to certain degree, the bursty nature of the request traffic.

We note that the delayed turn OFF policy using δ =
0 and always ON policy with N = 0, correspond to the
baseline policy. Furthermore, at the other extreme, when the
N and δ values are large, and no transitions are needed, then
the two policies are similar in nature.

For our simulations, we modelled a system with multiple
parallel queues, each with a finite queue size and fixed service
times. The servers are turned ON/OFF adaptively, based on
the policies above.

To capture the unique characteristics of the low-power and
standard servers, we determined queue size thresholds and
service rates based on measurements from our experiments.
The service rate, for both the low-power as well as the standard
server was obtained by using a least squares fitting of the data
points while assuming an M/D/1 queue. We used this service
rate values to calculate the queue sizes that would replicate the
performance of the low-power and standard servers used in our
experiments, and to achieve desirable service time guarantees.

For our request workload, requests are generated using
a Poisson process. To capture how the multi-server system
performs with increasing request rates, we generate request
sequences with λ = 300, 600, 900, 1200 and 1500 rps
respectively. The simulations were done for 1,000,000 arrivals
for these high arrival rates. To avoid transient effects, the initial
10,000 and the last 10,000 responses from the simulations were
omitted from our results.

In the simulation for always ON policy, the number of
minimum always ON servers were varied from 1 to 10 to cap-
ture its impact on energy consumed as well as overhead costs.

The delay durations used in simulating delayed turn OFF
policy are δ = 0.01, 0.1, 1, 10, and 100 seconds.

To capture the cost of scaling (overhead cost) on the life
of multi-server system, we look at the number of servers
transitions that are required to serve these high load. We
analyse the instantaneous power consumption (W) as well
as the total power consumed over time, Energy (Wh), to
gain insight into the energy savings that could potentially
be achieved by using low-power multi-server systems over
standard multi-server systems. We make use of the baseline
power consumption values from our experiment, 2W for a
single low-power server and 80W for a single standard server,
to obtain the energy consumption over the day.

C. Simulation results

Figure 9 shows the average number of servers required
for serving requests at varying arrival rates while maintaining
and SLA threshold of 10ms. While these results show that
more low-power servers are needed to serve any given request
load, it is important to remember that each low-power server
consumes much less energy. This is illustrated in Figure
10, which shows the comparison of aggregate daily power
consumption for various arrival rates for the low-power and
high-power servers.

Figure 11 shows the total number of transitions observed
using the baseline policy, where we have only one server that is
maintained in the ON state at all times. The rest of the servers
are turned ON/OFF as and when required ensuring that the
SLA is not violated. The queue sizes for the low-power and
high-power servers were determined using an SLA threshold of
10ms. A bigger slack in the SLA threshold would potentially
yield lower number of transitions.

An interesting observation from our simulations is that, at
high arrival rates, the number of transitions for both the low-
power and high-power servers are almost the same. This is
an encouraging observation as we have a finer grained control
over the number of transitions while using a low-power server
than using a high-power server. Hence, we look at the impact
of keeping certain number of servers always ON.

Figure 12 shows the impact of number of always ON
servers on the daily power consumption for a low-power server.
It can be seen that, for the workload considered here, and
with a minimum of 7 Always ON servers, we would get
a constant power profile. The policy simply trades additional
energy usage, due to always ON servers, against less server
transitions overhead. To gain further insight into the impact of
this policy on overhead cost, we look at the number of server
transitions that correspond to keeping a minimum of N servers
Always ON . Figure 13 shows the impact of these always ON
servers on number of server transitions for a low-power server.

One of the potential drawbacks of having an Always ON
policy is that we miss out on the ability to save power by turn-
ing them OFF when the load becomes low. This is addressed by
the simple Delayed turn OFF policy, which turns the servers
OFF after being idle for δ seconds. This deferral period allows
the policy to absorb some of the variability in the inter-arrival
times of the request process. Figure 14 shows the impact of
delaying the turning OFF of the servers on the daily power

Fig. 9. Number of servers that is ON using
baseline policy.

200 400 600 800 1000 1200 1400 1600

1
10

10
0

10
00

10
00

0

Arrival Rate, λ (rps)

E
ne

rg
y

co
ns

um
pt

io
n

pe
r

da
y

(W
h)

Pi Servers
Std Servers

Fig. 10. Baseline comparison of power con-
sumption under dynamic scenarios.

200 400 600 800 1000 1200 1400 1600

0
20

00
00

60
00

00
10

00
00

0

Arrival Rate, λ (rps)

N
um

be
r

of
 O

N
/O

F
F

 tr
an

si
tio

ns

Pi Servers
Std Servers

Fig. 11. Baseline comparison of server ON/OFF
transitions under dynamic scenarios.

2 4 6 8 10

0
10

0
20

0
30

0
40

0
50

0
60

0

Minimum servers ON

E
ne

rg
y

C
on

su
m

pt
io

n
pe

r
D

ay
 (

W
h) 300rps

600rps
900rps
1200rps
1500rps

Fig. 12. Impact of Always ON servers on Energy Consumption

2 4 6 8 10

1
10

0
10

00
0

10
00

00
0

Minimum servers ON

N
um

be
r

of
 T

ra
ns

iti
on

s

300rps
600rps
900rps
1200rps
1500rps

Fig. 13. Impact of Always ON servers on number of transitions

consumption for low-power servers. Similarly, the impact of
delayed server turn OFF on the total number of transitions is
shown in Figure 15. As expected, longer delays would help
keep the number of server transitions to a minimum.

To compare performance of above policies for a low-
power multi-server system, we look at the tradeoff between
energy consumption and number of server transitions for both
the policies as shown in Figure 16. As both these costs are
outputs of our simulations, for clarity, we show the policy
parameter values that correspond to each point. Interestingly,
our simulation results show that the Always ON policy is
marginally better than the Delayed turn OFF policy for
reducing both the energy as well as the number of server
transitions. These results show that the delayed turn OFF
policy often end up wasting valuable resources after periods
with many active servers. More intelligent hybrid policies, for
example, are possible, but is outside the scope of this paper.

For practical implementation, a proper tradeoff for the op-
erating point for a multi-server system should be a case which
would minimise the energy consumption as well as number of

0.01 0.10 1.00 10.00 100.00

0
10

0
20

0
30

0
40

0
50

0
60

0

Threshold delay, δ (s)

E
ne

rg
y

C
on

su
m

pt
io

n
pe

r
D

ay
 (

W
h) 300rps

600rps
900rps
1200rps
1500rps

Fig. 14. Impact of delayed Turn-OFF policy on Energy Consumption

0.01 0.10 1.00 10.00 100.00

1
10

0
10

00
0

10
00

00
0

Threshold delay, δ (s)

N
um

be
r

of
 T

ra
ns

iti
on

s

300rps
600rps
900rps
1200rps
1500rps

Fig. 15. Impact of delayed Turn-OFF policy on number of transitions for
Low-Power Server

server transitions. Depending on the service requirement, this
point can be selected from Figure 16 and the corresponding
policy parameters could be used.

In general, these energy-overhead tradeoffs for the low-
power servers appear beneficial in relationship to the cor-
responding cost tradeoffs when using regular servers. For
example, Figures 17 and 18 show the tradeoff curves for the
Delayed turn OFF and Always ON policies respectively,
for both low-power and standard multi-server systems. As
we can see, the energy savings are considerable with the
use of low-power multi-server systems over standard ones,
confirming that our conclusions also holds in the context of
dynamic policies and workloads.

VI. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we studied the power to performance tradeoff
obtained while using a low-power micro-computing device like
a Raspberry Pi as a Web server as opposed to a standard
tower server. For serving static content, the low-power server

1 100 10000 1000000

0
10

0
20

0
30

0
40

0
50

0
60

0

Number of ON/OFF transitions

E
ne

rg
y

C
on

su
m

pt
io

n
pe

r
da

y
(W

h)

N1

N2

N3
N1N2N3

N4

N5

N6

N7

N8

N1N2N3N4N5
N6

N7

N8

N9

N10

δ=0
δ=0.01

δ=0.1

δ=1.0
δ=10

δ=100
δ=0

δ=0.01

δ=0.1

δ=1.0

δ=10

δ=100

δ=0

δ=0.01

δ=0.1

δ=1.0

δ=10

δ=100

Delayed turn−off, 1500rps
Delayed turn−off, 900rps
Delayed turn−off, 300rps
Always On policy 1500rps
Always On policy, 900rps
Always On policy, 300rps

Fig. 16. Comparison of impact various policies
to achieve tradeoff between power and scaling
cost for low-power multi-server system

1 100 10000 1000000

1
10

10
0

10
00

10
00

0

Number of ON/OFF transitions

E
ne

rg
y

C
on

su
m

pt
io

n
pe

r
da

y
(W

h)

δ=0
δ=0.01

δ=0.1
δ=1.0δ=10

δ=100 δ=0δ=0.01
δ=0.1

δ=1.0δ=10δ=100
δ=0δ=0.01

δ=0.1δ=1.0δ=10δ=100

δ=0
δ=0.01δ=0.1δ=1.0

δ=10δ=100
δ=0

δ=0.01
δ=0.1

δ=1.0δ=10δ=100
δ=0δ=0.01

δ=0.1δ=1.0δ=10δ=100

Std Server, 1500rps
Std Server, 900rps
Std Server, 300rps
Pi Server 1500rps
Pi Server, 900rps
Pi Server, 300rps

Fig. 17. Comparison of energy-transition trade-
off for low-power and standard multi-server sys-
tems under delayed turn OFF policy

1 100 10000 1000000

1
10

10
0

10
00

10
00

0

Number of ON/OFF transitions

E
ne

rg
y

C
on

su
m

pt
io

n
pe

r
da

y
(W

h)

N1N2N3N4
N5N6N7N8 N1N2N3N4N5N6N7N8N9N10

N1
N2

N3
N1N2N3

N4
N5

Std Server, 1500rps
Std Server, 900rps
Pi Server 1500rps
Pi Server, 900rps

Fig. 18. Comparison of energy-transition trade-
off for low-power and standard multi-server sys-
tems under always ON policy

achieved performance equivalent to that of a standard server for
request rates up to 200 rps. For an architecture where multiple
low-power servers are used instead of standard tower servers,
we were able to observe reduction in power consumption by
a factor of 17x to 23x. The use of multiple low-power servers
would also enable finer-grained control over when to turn
servers ON/OFF for a workload with variable arrival rates
thereby achieving higher power savings.

Using simulations we validate the observations from our
experiments that low-power multi-server systems provide bet-
ter energy efficiency than standard multi-server systems. We
also show that, with simple ON/OFF policies, we can achieve
a good tradeoff between energy consumption and number of
server transitions.

Although the performance of serving dynamic content is
poor, the promising performance for static content is encour-
ages us to consider them as a viable alternative to approaches
for small-to-medium scale enterprises and universities. A
promising solution may use one or more low-power frontend
servers for static content and a standard server at backend
for dynamic content. The attractiveness of deploying low-
power servers is likely only going to increase with future
advancements in low-power architectures and their capabilities.

As part of future work, we would factor in a couple of
parameters that were not considered in our experiments and
simulation models. First, we would be looking at the impact of
peripherals on the server performance and power consumption.
For example, a large peripheral terabyte storage would cause
additional power consumption and could potentially result in
performance bottlenecks as well, due to limitations in interface
and read/write speeds. Second, we will look at the aspects of
reliability and redundancy. After an initial disk failure (due to
a sudden high fluctuation in power supply voltage), our device
under test remained operational without any failure for over 3
months. The system operated under standard load conditions,
serving static content with a load of λ < 100 rps. Typical
enterprise servers would have built-in redundancy and the ‘time
to recover’ from failure is very low. This ‘time to recover’ and
‘availability’ figures need to be quantified for these low-power
devices if they are to be commercially deployed. Also, the cost
of maintenance and redundancy need to be factored in.

Finally, we would consider as part of future work, the
use of these low-power systems as proxy servers for HTTP-
based Adaptive Streaming (HAS) [20]. HAS is a protocol

where streaming is done by splitting the video into HTTP
chunks and a range of these chunks are requested depending
on the required video quality and available bandwidth. Use
of low-power proxy servers along with a carefully designed
prefetching policy could potentially achieve better streaming
performance. Moreover, HTTP chunks can be considered as
static content. Hence, based on our results, we expect these
low-power proxy servers to be able to handle the streaming
workload with minimal loss in performance.

REFERENCES

[1] “Netcraft web-server survey july 2013,” http://news.netcraft.com/archives/2013/
07/02/july-2013-web-server-survey.html.

[2] W. Vogels, “Beyond server consolidation,” Queue, vol. 6, no. 1, pp. 20–26, 2008.

[3] V. Valancius, N. Laoutaris, L. Massoulié, C. Diot, and P. Rodriguez, “Greening
the internet with nano data centers,” in Proc. ACM CoNEXT ’09, pp. 37–48, 2009.

[4] L. Barroso and U. Holzle, “The case for energy-proportional computing,” Com-
puter, vol. 40, no. 12, pp. 33–37, 2007.

[5] A. Bogus, Lighttpd. Packt Publishing, 2008.

[6] J. Almeida, V. Almeida, and D. Yates, “Measuring the behavior of a world-wide
web server,” Boston, MA, Tech. Rep., 1996.

[7] M. F. Arlitt and C. L. Williamson, “Internet web servers: workload characteriza-
tion and performance implications,” IEEE/ACM Trans. Netw., vol. 5, no. 5, pp.
631–645, 1997.

[8] R. Hashemian, D. Krishnamurthy, M. Arlitt, and N. Carlsson, “Improving the
scalability of a multi-core web server,” in Proc. 4th ACM/SPEC ICPE, pp. 161–
172, 2013.

[9] D. Menasce, “TPC-W: A benchmark for e-commerce,” Internet Computing, IEEE,
vol. 6, no. 3, pp. 83–87, 2002.

[10] “Specweb2009,” http://www.spec.org/web2009/.

[11] “Specpowerssj 2008,” http://www.spec.org/power\ ssj2008/.

[12] G. Bai, K. Oladosu, and C. Williamson, “Performance benchmarking of wireless
web servers,” Ad Hoc Netw., vol. 5, no. 3, pp. 392–412, 2007.

[13] C. Amza, A. Chanda, A. Cox, S. Elnikety, R. Gil, K. Rajamani, W. Zwaenepoel,
E. Cecchet, and J. Marguerite, “Specification and implementation of dynamic web
site benchmarks,” in Proc. IEEE WWC-5, pp. 3–13, 2002.

[14] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V. Va-
sudevan, “Fawn: a fast array of wimpy nodes,” in Proc. ACM SIGOPS SOSP, pp.
1–14, 2009.

[15] P. Sehgal, V. Tarasov, and E. Zadok, “Optimizing energy and performance for
server-class file system workloads,” Trans. Storage, vol. 6, no. 3, pp. 10:1–10:31,
2010.

[16] V. Mathew, R. Sitaraman, and P. Shenoy, “Energy-aware load balancing in content
delivery networks,” in Proc. IEEE INFOCOM, pp. 954–962, 2012.

[17] “Calxeda,” http://www.calxeda.com/.

[18] D. Mosberger and T. Jin, “httperf - a tool for measuring web server performance,”
SIGMETRICS PER., 1998.

[19] M. Teel, “Using wview,” Linux J., vol. 2010, no. 196, . 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1883498.1883500

[20] V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, and N. Shahmehri,
“Helping hand or hidden hurdle: Proxy-assisted http-based adaptive streaming
performance,” in Proc. IEEE MASCOTS, pp. 182–191, 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

